

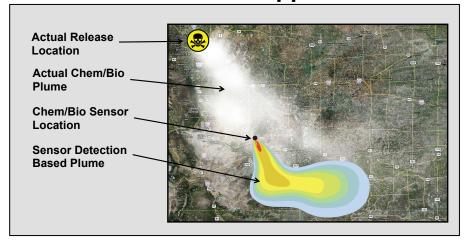
Source Term Estimation (STE) Methods Session

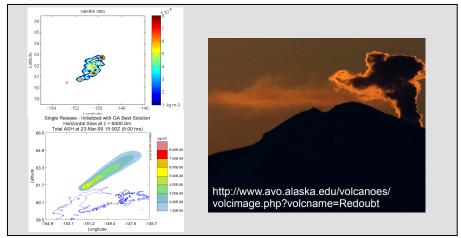
Damon Room
National Center for Atmospheric Research
Boulder, CO

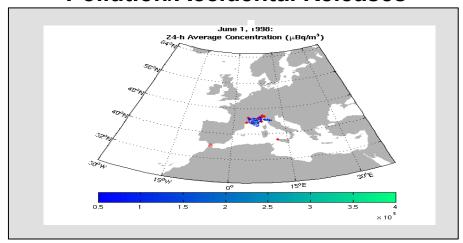
22-23 February, 2012

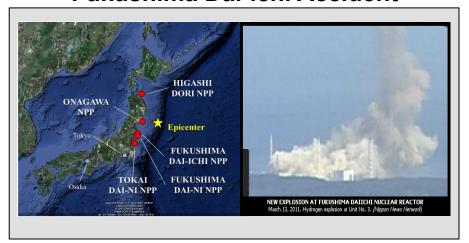
Sponsored By:
National Science Foundation and
National Center for Atmospheric Research

NCAR/RAL - National Security Applications Program


1

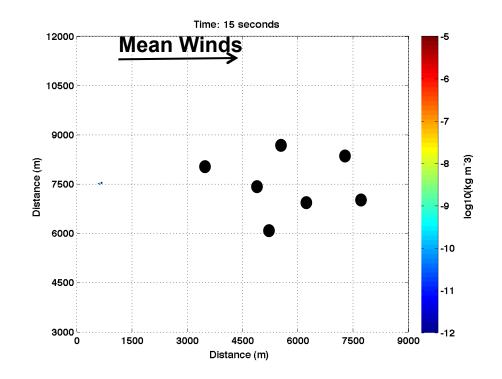

STE Problems


CBRNE Defense Applications


Volcanic Ash Prediction

Pollution/Accidental Releases

Fukushima Dai-ichi Accident


NCAR/RAL - National Security Applications Program

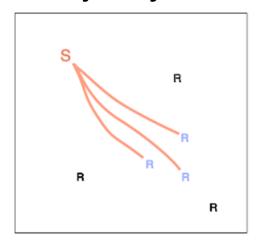
Common Challenges to STE

- Meteorological information
 - Rarely adequate
- Source information
 - Varying degrees of knowledge
- Concentration/deposition observations
 - Too sparse
 - Variety of types of data
- Dispersion modeling tools
 - Model errors
 - Multiple Scales

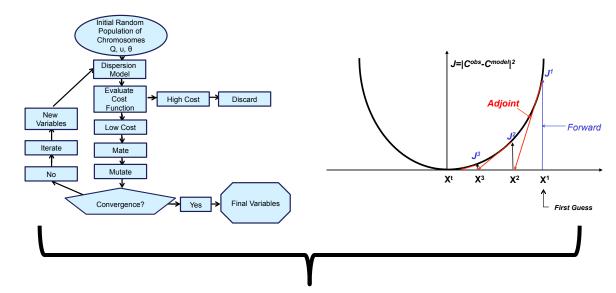
Complex Multi-dimensional Problem that Typically Has Large Uncertainties

Requirements for STE Approaches

- Effective
 - Quantitative and accurate
- Efficient
 - Provide a solution within the given time constraints
 - This varies depending upon the application
- Flexible
 - Adaptable to a variety of problems
 - Adaptable to a variety of scales of motion
 - Adaptable to a variety of classes of observations
- Robust
 - Can be used in an operational or high consequence situation
- Quantifies uncertainty
 - "All models are wrong but some are useful" -George E.P. Box



General Categories of STE Approaches

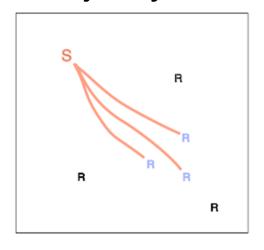

(Most Likely Not All-Inclusive and Open for Debate)

Back-trajectory Methods

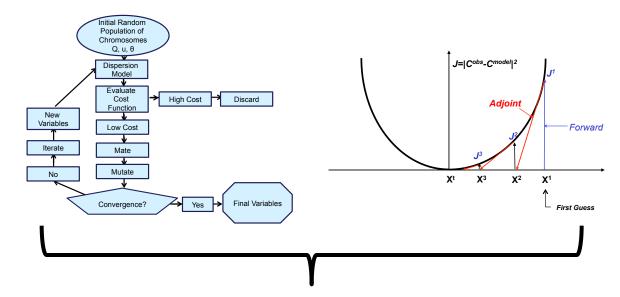
Non-Gradient Descent

Gradient Descent

Attempt to Match a **Dispersion Model to the Observations**



General Categories of STE Approaches


(Most Likely Not All-Inclusive and Open for Debate)

Back-trajectory Methods

Non-Gradient Descent

Attempt to Match a **Dispersion Model to the Observations**

Methods Can Also Be Categorized in Terms of Reference Frame in Which the Problem is Posed: Lagrangian vs. Eulerian

Workshop Agenda

(Session III – Wed, February 22)

Session III - Methods for Source Term Estimation of Atmospheric Radiation Release	
13:00	Introduction of Wednesday STE Methods Session, Dr. Paul E. Bieringer , (National Center for Atmospheric Research)
13:05	Survey of Estimation Methods for Amount of Radioactive Materials Emitted from the Nuclear Power Station During Severe Accident, Dr. Ryohji Ohba , (Japan Nuclear Safety Research Association)
13:15	Source Term Estimation and Atmospheric Dispersion Simulations of Radioactive Materials Discharged from the Fukushima Daiichi Nuclear Power Plant due to Accident, Dr. Haruyasu Nagai , (Japan Atomic Energy Agency)
13:45	Development of an Estimation Method for the Amount of Radioactive Materials Emitted from the Nuclear Power Station During the Severe Accident, Dr. Ryohji Ohba, (Japan Nuclear Safety Research Association)
14:15	Back-trajectory Based Methods for Source Parameter Estimation, Dr. Andrew Annunzio , (National Center for Atmospheric Research)
14:30	Coffee break

Reminder of Things to Keep In Mind

- Take advantage of the broad spectrum of expertise
 - Radiation observation collection/analysis expertise
 - NPP and radiation modeling expertise
 - STE modeling expertise
 - Meteorological expertise
- Look for innovative new solutions that take advantage of the things you hear from colleagues here at the workshop