# **dstl** Source Term Estimation for Hazardous Releases

Fukushima Workshop NCAR, 22<sup>nd</sup> – 23<sup>rd</sup> February 2012 Dstl/DOC61790

Dr. Gareth Brown

### **Presentation Outline**

- Dstl's approach to Source Term Estimation
- Recent developments
  - Spatially and temporally gridded urban met object
  - Processing of deposition measurements
- Toy example
- Application to Fukushima



**UK UNCLASSIFIED** 



### Source Term Estimation Monte Carlo Bayesian Data Fusion (MCBDF)

- MCBDF provides a set of likely source terms for calculating probabilistic hazards
- Accounts for uncertainty in source, meteorology, sensor performance & human reporting





**UK UNCLASSIFIED** 

**P. Robins, V. Rapley, N. Green,** *Realtime* Sequential Inference of Static Parameters with Expensive Likelihood Calculations (2009)

### **Bayes' Theorem**

 $p(\theta|y) \propto p(y|\theta) p(\theta)$ 

Posterior probability density of hypothesis θ given the data y Likelihood probability density of the data *y* conditional on the hypotheses θ

#### Prior

probability density of θ based on prior knowledge

- Iterative update of belief in a hypothesis
- Likelihood calculation particularly costly
  - Necessary to run dispersion model for sensor data
  - Sensor likelihood function complex



### **MCBDF: Bayesian data fusion**

 MCBDF uses Bayesian inference over a sample set of hypothesized source-terms and Met. variables

$$\theta = (\underbrace{x, y, t, m, d, a, u_{*_x}, u_{*_y}, \frac{1}{L}, \ln(z_0), \underbrace{D, P}_{Model}}_{Met})$$

• The dimensionality of problem depends on its complexity

- Complex source terms
- Gridded meteorology in time and space
- Urban dispersion



**UK UNCLASSIFIED** 



# **Physics Modelling**

Dispersion is a turbulent process

- Impossible to model accurately
- Use ensemble puff dispersion models
- **SPRINT model optimised for STE**
- Implements SCIPUFF closure relations







**UK UNCLASSIFIED** 



0.9

### **MCBDF: Example Prior**



© Crown Copyright 2012

**UK UNCLASSIFIED** 



Ministry of Defence

### **Sensor Likelihood Calculations**

 When CB sensor measurements are passed to MCBDF the likelihood is calculated as

$$p(y | \mu, \sigma^2) = \int_{0}^{\infty} \underbrace{p(y | c)}_{\text{measurement density}} \underbrace{p(c | \mu, \sigma^2)}_{\text{concentration density}} dc$$

- $\equiv$  Sensor measurement
- $\mu \equiv$  Mean mass-concentration from dispersion simulation
  - $Z \equiv Mass$  concentration variance from dispersion simulation
  - $\equiv$  Unobserved ground-truth concentration

© Crown Copyright 2012

dstl

**UK UNCLASSIFIED** 



### **MCBDF: Upon Receipt of a Detection**



© Crown Copyright 2012

**UK UNCLASSIFIED** 



# Estimating the Posterior Distribution

# $p(\theta|\mathbf{y}) \propto \prod_{i} p(y_i|\theta) p(\theta)$

- Calculated as the product of the individual likelihoods and the prior
- Posterior estimated by sampling lots of hypotheses
- MCBDF uses Differential Evolution Markov Chain (DEMC) Monte Carlo to generate new hypotheses





### **Calculating Hazard Areas**

- The Hazard Calculator obtains the probability of exceeding a specified threshold dosage
- A weighted sum of these gridded probabilities is used to define the probable hazard area

Release locationSensor network



Red: ground truth; green: predicted



**UK UNCLASSIFIED** 



🔲 USFOB25 - MCBDF

So

PI

File Edit Execute Tools View Help

|--|

| ario                        |                      | ₽×       |
|-----------------------------|----------------------|----------|
| perty                       | Value                | ^        |
| Simple Meteorology          |                      |          |
| surface roughness (m)       | 0.01                 |          |
| 🖨 UStar                     |                      |          |
| × component (m)             | -0.12                |          |
| y component (m)             | -0.17                |          |
| monin obukhov recipro       | ocal (m^(-1)) 0      |          |
| absolute temperature        | e (K) 293            |          |
| Timing                      |                      |          |
| start time of scenario      | 03/03/2011 1         | 10:00:00 |
| end time of scenario        | 03/03/2011 1         | 13:00:00 |
| time step interval (s)      | 60                   |          |
| Forward model               |                      |          |
| meteorology sensor o        | utput freq 10        |          |
| hazard grid output fre      | equency 1            |          |
| - Domain                    |                      |          |
| centre latitude (°)         | 56,13191667          | /        |
| centre longitude (°)        | 8.89800000           |          |
| extent (m)                  | 30000                |          |
| map resolution              | 4096                 |          |
| m background particle popul | ation mean 100       | <b>`</b> |
| nsor Placements             |                      | ₽×       |
| operty                      | Value                | <u>^</u> |
| Sensor 1                    |                      |          |
| latitude (°)                | 56.296417            | _        |
| longitude (°)               | 9.094744             |          |
| height above terrain (m)    | 10.000000            |          |
| L. type                     | MeteorologySensor    |          |
| Sensor 2                    |                      |          |
| latitude (°)                | 56.320698            |          |
| longitude (°)               | 9.043645             |          |
| height above terrain (m)    | 1.000000             |          |
| i type                      | ThresholdAlarmSensor |          |
| Sensor 3                    |                      |          |
| latitude (°)                | 56.314641            |          |
| longitude (°)               | 9.083819             |          |
| height above terrain (m)    | 1.000000             |          |
| · type                      | ThresholdAlarmSensor |          |
| Sensor 4                    |                      |          |
| latitude (°)                | 56.276339            |          |
| longitude (°)               | 9.080213             |          |
| height above terrain (m)    | 1.000000             |          |
| type                        | ThresholdAlarmSensor | ~        |
|                             |                      |          |
|                             |                      |          |



**UK UNCLASSIFIED** 



### **Recent Developments**

- MCBDF initially developed for rapid warning of chemical attacks based on input from sensor networks
  - Short effective duration approximates to spatially and temporally invariant meteorology
- However STE for Bio and Rad releases in major cities requires
  - Fast dispersion models accounting for urban areas
  - Much longer temporal windows
  - Efficient methods to compute long duration dosage / deposition
  - Spatially varying meteorology for large scale dispersion





### **Meteorological Inference**

Urban capability

dst

- Gridded urban meteorological model defined
  - Wind flow components gridded in 2D space and time
  - Surface properties gridded in 2D space
  - Atmospheric stability gridded in time
- 60 400 extra dimensions in parameter space
  - MCMC techniques still efficient if converged

own Copyright 2012

 Much more difficult to achieve convergence

#### Sykes et al, SCIPUFF Tech Doc



$$f_{c}(z, h_{c}, \alpha_{c}) = \exp \left[ -\alpha_{c} \left( 1 - \frac{z}{h_{c}} \right) \right]$$
anopy height
Canopy flow parameter



Dstl is part of the Ministry of Defence

### **Toy Problem Example**

- Single, short duration release
- Single isotope
- Quantitative deposition measurements
- Spatially gridded, but temporally invariant meteorology
- No transport due to rain run-off before measurements taken





### **Deposition data**

 Likelihood model for quantitative measurement of deposited material

- Assume local detection only, alpha, beta, not longrange gamma
- Uncertainty per measurement, not fixed
  - Time taken to collect Poisson count statistics
  - Energy spectrum uncertainty on which isotope is being measured
  - Naturally occurring background (with uncertainty) subtracted
  - Simple, normally distributed measurement error model
  - Lower limit and saturation can be input





# **Sample Points**

- 88 points
- 20km exclusion zone shown
- Release point known
- No met data







- First measurement above background
- Close to source
- Huge met uncertainty





**UK UNCLASSIFIED** 



- First 3 rings of data
- Less uncertainty close to source





**UK UNCLASSIFIED** 



• 4 rings of data





**UK UNCLASSIFIED** 



• 6 rings of data





**UK UNCLASSIFIED** 



- All data
- More time for convergence







### **Problems to solve for Fukushima**

#### Parameters to infer:

- Mass released in each hour over the last year
- Gridded meteorology for each hour over the last year
  - 10km spatial resolution
- Modelling:
  - Gamma sensors pick up spatially averaged dose
    - Function of range needs integrating
      - $1/r^2$ , attenuation through air, scatter build up factors
  - Longer range second order closure dispersion model needed
    - SCIPUFF
    - Other?
  - Further transport of deposited material due to water run-off







**UK UNCLASSIFIED** 



## The Concentration Sensor Likelihood Model

 Critical to the performance of MCBDF is an accurate probabilistic description of the detector's response

$$p(y|c) = \begin{cases} \Phi(\underline{L}|c,\sigma_e^2) & y = \underline{L} \\ \phi(y|c,\sigma_e^2) & \underline{L} < y < \overline{L} \\ 1 - \Phi(\overline{L}|c,\sigma_e^2) & y = \overline{L} \end{cases}$$

normal distribution CDF

- $\sigma_e^2 \equiv$  Measurement error variance  $\overline{L} \equiv$  Sensor saturation point
  - $\equiv$  Sensor limit of detection

Crown Copyright

**UK UNCLASSIFIED** 



### **Deposition modelling**

 Improved physics improves consistency of sensor data likelihood modelling

- More accurate source term estimation in presence of deposition
- Amount of deposition inferred from data and/or uncertainty correctly passed to hazard calculations





### **Deposition data**

 Likelihood model for detection of deposited material already in place

- **Biological hazards**
- Similar to a probit model
- Extended to include:
  - Probability of false alarm
  - Probability of false negative
- Integrate out unobserved true amount of deposited material





### Prelim. deposition results (simulated met. constant)

#### **Collectors + Identifiers (dosage)**

#### + Survey ID (deposition)





17 February 2012

UK UNCLASSIFIED © Crown Copyright 2012



### **Burn In and Convergence**

- Initial hypotheses may be far from the peak of the posterior
- But rapid answers are required
  - Data continually changing the posterior
  - limited time for new sample weights to make the old ones insignificant
  - Limited time for samples to spread out and capture true uncertainty
- Detection of non-convergence delays message processing



17 February 2012 © Crown Copyright 2012

**UK UNCLASSIFIED** 



### **Hazard Calculation**

#### Probit slope model

– S used to indicate uncertainty in appropriate value for  $\chi_{d50}$ 

$$p\left(Hazard \left| \chi_{d} \right) = \frac{1}{2} \left( 1 + erf\left( \frac{S}{\sqrt{2}} \log_{10} \left( \frac{\chi_{d}}{\chi_{d50}} \right) \right) \right)$$

$$p\left(Hazard\left|\overline{\chi_{d}},\overline{\chi_{d}'}^{2}\right)=\int_{0}^{\infty}p\left(\chi_{d}\left|\overline{\chi_{d}},\overline{\chi_{d}'}^{2}\right)p\left(Hazard\left|\chi_{d}\right)d\chi_{d}\right)$$

Average over 1000 release/met samples from posterior.



**UK UNCLASSIFIED** 



### Deposition data likelihood (clipped normal)

$$p(y|\chi_{d}) = \begin{cases} \Phi(\underline{L}|\chi_{d},\sigma_{e}^{2}) & y = \underline{L} \\ \phi(y|\chi_{d},\sigma_{e}^{2}) & \underline{L} < y < \overline{L} \\ 1 - \Phi(\overline{L}|\chi_{d},\sigma_{e}^{2}) & y = \overline{L} \end{cases} \qquad (\overline{\chi_{d}},\overline{\chi_{d}^{\prime 2}}) \xrightarrow{unclipped} (\mu_{N},\sigma_{N}^{2}) \\ 1 - \Phi(\overline{L}|\chi_{d},\sigma_{e}^{2}) & y = \overline{L} \end{cases}$$

$$p(y|\mu_{N},\sigma_{N}^{2}) = \begin{cases} \int_{0}^{\infty} \Phi(\underline{L}|\chi_{d},\sigma_{e}^{2}) \Big[ \Phi(0|\mu_{N},\sigma_{N}^{2}) \delta(\chi_{d}) + \phi(\chi_{d}|\mu_{N},\sigma_{N}^{2}) \Big] d\chi_{d} & y = \underline{L} \\ \int_{0}^{\infty} \phi(y|\chi_{d},\sigma_{e}^{2}) \Big[ \Phi(0|\mu_{N},\sigma_{N}^{2}) \delta(\chi_{d}) + \phi(\chi_{d}|\mu_{N},\sigma_{N}^{2}) \Big] d\chi_{d} & \underline{L} < y < \overline{L} \end{cases}$$

$$p(y|\mu_{N},\sigma_{N}^{2}) = \begin{cases} \Phi(\underline{L}|0,\sigma_{e}^{2}) \Phi(0|\mu_{N},\sigma_{N}^{2}) + \int_{-\infty}^{L} k(y) \Big[ 1 - \Phi(0|\mu(y),\sigma_{N}^{2}(y)) \Big] dy & y = \underline{L} \end{cases}$$

$$p(y|\mu_{N},\sigma_{N}^{2}) = \begin{cases} \Phi(\underline{L}|0,\sigma_{e}^{2}) \Phi(0|\mu_{N},\sigma_{N}^{2}) + \int_{-\infty}^{L} k(y) \Big[ 1 - \Phi(0|\mu(y),\sigma_{N}^{2}(y)) \Big] dy & y = \underline{L} \end{cases}$$

$$\phi\left(x\left|\mu,\sigma^{2}\right) \equiv \phi\left(\mu\left|x,\sigma^{2}\right)\right)$$

$$\phi\left(x\left|\mu,\sigma^{2}\right)\phi\left(x\right|\mu_{2},\sigma^{2}\right) \equiv k\phi\left(x\left|\mu,\sigma^{2}\right)\right)$$

$$\sigma^{2} = \frac{\sigma_{1}^{2}\sigma_{2}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}$$

$$\mu = \sigma^{2}\left(\frac{\mu_{1}}{\sigma_{1}^{2}} + \frac{\mu_{2}}{\sigma_{2}^{2}}\right)$$

$$k = \frac{\sigma}{\sigma_{1}\sigma_{2}}\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{\mu_{1}^{2}}{\sigma_{1}^{2}} + \frac{\mu_{2}^{2}}{\sigma_{2}^{2}} - \frac{\mu^{2}}{\sigma^{2}}\right)}$$

#### Romberg (closed and semi-infinite) numerical integration



17 February 2012 © Crown Copyright 2012

**UK UNCLASSIFIED** 



### **Deposition data likelihood (clipped gamma)**

 $p(y|\mu_N)$ 

p(y)

$$\int_{0}^{\infty} \Phi\left(\underline{L} \middle| \chi_{d}, \sigma_{e}^{2} \right) \left[ \left( \frac{\chi_{d} + \lambda}{s} \right)^{k^{*} - 1} \frac{\exp\left(-\left(\frac{\chi_{d} + \lambda}{s}\right)\right)}{s\Gamma(k^{*})} + (1 - \gamma)\delta(\chi_{d}) \right] d\chi_{d} \qquad y = \underline{L}$$

$$,\sigma_{N}^{2} = \begin{cases} \int_{0}^{\infty} \phi(y|\chi_{d},\sigma_{e}^{2}) \left[ \left(\frac{\chi_{d}+\lambda}{s}\right)^{k^{*}-1} \frac{\exp\left(-\left(\frac{\chi_{d}+\lambda}{s}\right)\right)}{s\Gamma(k^{*})} + (1-\gamma)\delta(\chi_{d}) \right] d\chi_{d} \qquad \underline{L} < y < \overline{L} \end{cases}$$

$$\left| \int_{0}^{\infty} \left( 1 - \Phi\left(\overline{L} \middle| \chi_{d}, \sigma_{e}^{2} \right) \right) \left[ \left( \frac{\chi_{d} + \lambda}{s} \right)^{k^{*} - 1} \frac{\exp\left( - \left( \frac{\chi_{d} + \lambda}{s} \right) \right)}{s\Gamma(k^{*})} + (1 - \gamma)\delta(\chi_{d}) \right] d\chi_{d} \qquad y = \overline{L}$$

$$\Phi\left(\underline{L}|0,\sigma_{e}^{2}\right)(1-\gamma)+\int_{0}^{\infty}\Phi\left(\underline{L}-\chi_{d}|0,\sigma_{e}^{2}\right)\left[\left(\frac{\chi_{d}+\lambda}{s}\right)^{k^{*}-1}\frac{\exp\left(-\left(\frac{\chi_{d}+\lambda}{s}\right)\right)}{s\Gamma(k^{*})}\right]dc \qquad y=\underline{L}$$

$$u_{N},\sigma_{N}^{2} = \begin{cases} \phi\left(y\left|0,\sigma_{e}^{2}\right)\left(1-\gamma\right)+\int_{0}^{\infty}\phi\left(y\left|\chi_{d},\sigma_{e}^{2}\right)\right|\left(\frac{\chi_{d}+\lambda}{s}\right)^{k^{*}-1}\frac{\exp\left(-\left(\frac{\chi_{d}+\lambda}{s}\right)\right)}{s\Gamma(k^{*})}\right| dc \qquad \qquad \underline{L} < y < \overline{L} \end{cases}$$

$$\int_{0}^{\infty} \left(1 - \Phi\left(\overline{L} - \chi_{d} \left| 0, \sigma_{e}^{2} \right)\right) \left[ \left(\frac{\chi_{d} + \lambda}{s}\right)^{k^{*} - 1} \frac{\exp\left(-\left(\frac{\chi_{d} + \lambda}{s}\right)\right)}{s\Gamma(k^{*})} \right] dc \qquad x = \overline{L}$$



 $p(y|\chi_d) = \begin{cases} \Phi(\underline{L}|\chi_d, \sigma_e^2) & y = \underline{L} \\ \phi(y|\chi_d, \sigma_e^2) & \underline{L} < y < \overline{L} \\ 1 - \Phi(\overline{L}|\chi_d, \sigma_e^2) & y = \overline{L} \end{cases}$ 

 $\left(\overline{\chi_d},\overline{\chi_d'}^2\right) \longrightarrow \left(s,k^*,\lambda\right)$ 



**UK UNCLASSIFIED** 

 $\left|\left(1-\Phi\left(\overline{L}\left|0,\sigma_{e}^{2}
ight)
ight)\left(1-\gamma
ight)+
ight.
ight.$ 



## Urban meteorology

- Displacement height  $z_d(h_c, \alpha_c) = 0.7h_c F_c(\alpha_c)$ • Canopy blending  $F_c(\alpha_c) = 1 - \exp\left(-\frac{(\alpha_c)^2}{0.25 + 0.5\alpha_c}\right)$ • Mean wind vector  $\overline{u}(x, y, z, t) = g(x, y, z)\overline{u}(x, y, z, t)$   $\overline{u}_x(x, y, z, t) = \frac{f_d(z', z_0, L)}{k}u_{*x}(x, y, t)$   $\overline{u}_y(x, y, z, t) = \frac{f_d(z', z_0, L)}{k}u_{*y}(x, y, t)$   $z'(x, y, z) = \begin{cases} h_c - z_d & \text{if } (h_c < z_s + z_d) & \text{and } (z < h_c) \\ or & (h_c \ge z_s + z_d) \end{cases}$  $z_s & \text{if } (h_c < z_s + z_d) & \text{and } (z \ge z_s + z_d) \end{cases}$
- Surface layer profile
- Canopy layer profile
- Blending function

$$f_{sl}(z, z_0, L) = \ln\left(\frac{z}{z_0} + 1\right) - \Psi_m(\frac{z}{L})$$

$$f_c(z, h_c, \alpha_c) = \exp\left[-\alpha_c \left(1 - \frac{z}{h_c}\right)\right]$$

$$g(x, y, z) = F_c(\alpha_c) f_c(z, h_c, \alpha_c) + (1 - F_c(\alpha_c)) \frac{f_{sl}(z, z_0, L)}{f_c(h_c, z_c, L)}$$





### Wind vector spatial derivatives

• Calculated by chain rule, e.g.:





17 February 2012

© Crown Copyright 2012



### Hypotheses

• Temporal gridding • Spatial gridding  $\theta = (l_1, l_2, t, m, \ln(d), \ln(v_d), a, u_{*_x}, u_{*_y}, \frac{1}{L}, \ln(z_0), \ln(h_c), \ln(\alpha_c), \underline{DP})$ Model • Location • Location • Time • Mass • Duration • Deposition velocity • Agent • Friction velocity components

- Reciprocal Monin Obukhov length
- Surface roughness
- Canopy Height
- Canopy Flow
- Dispersion model
- Dispersion model output PDF

 Floating point values used to index discrete values



17 February 2012 © Crown Copyright 2012

**UK UNCLASSIFIED** 



### **Accuracy Compared to ATP45**



- Concentration sensor network
- Meteorology sensor
  - Shear LIDAR
  - SODAR
  - Multiple anenometers
- Probability of hazard effect
  - Ground Truth
  - Inferred



© Crown Copyright 2012

17 February 2012

**UK UNCLASSIFIED** 



### **Uncertainty Compared to ATP45**



- Single prompt alarm
- Forecast meteorology
- Probability of hazard effect
  - Ground
  - Inferred



© Crown Copyright 2012

**UK UNCLASSIFIED** 



### Processing dynamic sensor data

- MCBDF performs sourceterm estimation in realtime
  - A time window is maintained - typically 30 minutes into the past for chem, 2 days for bio
- On receipt of new data, old hypotheses and old data will become obsolete and are removed as they exit the current time window
  - Total likelihood housekeeping
- Remaining hypothesis • weights are modified by the likelihood of new data



© Crown Copyright 2012

UK UNCLASSIFIED





### **Exam Question**

- Source term means to an end
- How much material is in the soil
  - Can the land be used for habitation or farming.



**UK UNCLASSIFIED** 



### Summary

- Deposition survey data as a data source appears effective
- Modelling/inference extensions required



**UK UNCLASSIFIED** 

