

An Adjoint Approach for the Estimation of Source Terms for Atmospheric Releases

23 February, 2012

Luna M. Rodriguez, F. Vandenberghe, P. E. Bieringer, J. Hurst, J. Weil

National Center for Atmospheric Research

NCAR/RAL - National Security Applications Program

Adjoint

Gradient Descent Minimization

- Chemical, Biological, Radioactive, or Nuclear (CBRN) Source Term Estimation (STE) examples
 - High quality meteorological data
 - Poor quality meteorological data
- Utilizing information on uncertainty in observations
 - Cost function visualization and scaling
 - STE variable uncertainty relations
- Uncertainty mapping
 - Physics-based method (uncertainty are inputs to constrain adjoint)
 - Ensemble-based method (adjoint to define the initial uncertainty)

- Chemical, Biological, Radioactive, or Nuclear (CBRN) Source Term Estimation (STE) examples
 - High quality meteorological data
 - Poor quality meteorological data
- Utilizing information on uncertainty in observations
 - Cost function visualization and scaling
 - STE variable uncertainty relations
- Uncertainty mapping
 - Physics-based method (uncertainty are inputs to constrain adjoint)
 - Ensemble-based method (adjoint to define the initial uncertainty)

Operational Chemical, Biological, Radiological, and Nuclear (CBRN) Defense Problem

- Scenario
 - A sensor or sensor network detects CBRN materials
 - Detection is currently used as the source to forecast the downwind impact
 - The initial forecast may not accurately reflect the actual threat

High Level CBRN STE Algorithm Design

- STE algorithm design constraints
 - Ability to utilize varying types and frequency of observations
 - Compatible with Second-order Closure Integrated PUFF (SCIPUFF) and Joint Effects Model (JEM) system designs
 - Suitable to run on a laptop (e.g. computationally efficient)
 - Answer available within seconds to minutes of starting the STE job

Observations

- Chemical, Biological, Radioactive, or Nuclear (CBRN) Source Term Estimation (STE) examples
 - High quality meteorological data
 - Poor quality meteorological data
- Utilizing information on uncertainty in observations
 - Cost function visualization and scaling
 - STE variable uncertainty relations
- Uncertainty mapping
 - Physics-based method (uncertainty are inputs to constrain adjoint)
 - Ensemble-based method (adjoint to define the initial uncertainty)

STE Algorithm Example

Iteration 1 Log10 Location Minimization 20-Sep-2007 15:34:50

Concentration log10(PPM)

NCAR/RAL - National Security Applications Program

- Chemical, Biological, Radioactive, or Nuclear (CBRN) Source Term Estimation (STE) examples
 - High quality meteorological data
 - Poor quality meteorological data
- Utilizing information on uncertainty in observations
 - Cost function visualization and scaling
 - STE variable uncertainty relations
- Uncertainty mapping
 - Physics-based method (uncertainty are inputs to constrain adjoint)
 - Ensemble-based method (adjoint to define the initial uncertainty)

Wind Adjustment in CB STE Algorithm

(FFT07* Case 61)

*FUsing Sensor Integrated Observing Network (FUSION) Field Trials 2007 (FFT07)

NCAR/RAL - National Security Applications Program

- Chemical, Biological, Radioactive, or Nuclear (CBRN) Source Term Estimation (STE) examples
 - High quality meteorological data
 - Poor quality meteorological data
- Utilizing information on uncertainty in observations
 - Cost function visualization and scaling
 - STE variable uncertainty relations
- Uncertainty mapping
 - Physics-based method (uncertainty are inputs to constrain adjoint)
 - Ensemble-based method (adjoint to define the initial uncertainty)

Cost Function Visualization

Schematic of Cost

Cost Surface for Location

Cost Function and Uncertainty

- Chemical, Biological, Radioactive, or Nuclear (CBRN) Source Term Estimation (STE) examples
 - High quality meteorological data
 - Poor quality meteorological data
- Utilizing information on uncertainty in observations
 - Cost function visualization and scaling
 - STE variable uncertainty relations
- Uncertainty mapping
 - Physics-based method (uncertainty are inputs to constrain adjoint)
 - Ensemble-based method (adjoint to define the initial uncertainty)

(Plume Reference Frame)

NCAR/RAL - National Security Applications Program

NCAR

(Plume Reference Frame)

(Plume Reference Frame)

(Plume Reference Frame)

NCAR/RAL - National Security Applications Program

(Plume Reference Frame)

- Chemical, Biological, Radioactive, or Nuclear (CBRN) Source Term Estimation (STE) examples
 - High quality meteorological data
 - Poor quality meteorological data
- Utilizing information on uncertainty in observations
 - Cost function visualization and scaling
 - STE variable uncertainty relations
- Uncertainty mapping
 - Physics-based method (uncertainty are inputs to constrain adjoint)
 - Ensemble-based method (adjoint to define the initial uncertainty)

Cost Function

(Uncertainty Mapping)

The Cost Function is defined as:

$$J = (\frac{1}{2} [C^{obs}(t) - C(t)]^{T} [R]^{-1} [C^{obs}(t) - C(t)]) + (\frac{1}{2} [A_{m}]^{T} [E_{B}]^{-1} [A_{m}])$$

Current definition of Background Error Covariance Matrix (E_B) used:

$$\mathbf{E}_{\mathrm{B}} = \begin{bmatrix} \sigma_{\mathrm{STE1}}^2 & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \sigma_{\mathrm{STE2}}^2 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \sigma_{\mathrm{STEn}}^2 \end{bmatrix}$$

Full Background Error Covariance Matrix (E_B):

	σ^2_{xx}	$\mathbf{cov}(\mathbf{x},\mathbf{y})$	$\mathbf{cov}(\mathbf{x},\mathbf{z})$	$\mathbf{cov}(\mathbf{x},\mathbf{q})$	$\mathbf{cov}(\mathbf{x},\mathbf{U})$	$\mathbf{cov}(\mathbf{x}, \mathbf{\theta})$	$\mathbf{cov}(\mathbf{x},\mathbf{t})$
	$\mathbf{cov}(\mathbf{y},\mathbf{x})$	σ^2_{yy}	$\mathbf{cov}(\mathbf{y},\mathbf{z})$	$\mathbf{cov}(\mathbf{y},\mathbf{q})$	$\mathbf{cov}(\mathbf{y},\mathbf{U})$	$\mathbf{cov}(\mathbf{y}, \mathbf{\theta})$	$\mathbf{cov}(\mathbf{y},\mathbf{t})$
-	$\mathbf{cov}(\mathbf{z},\mathbf{x})$	$\mathbf{cov}(\mathbf{z},\mathbf{y})$	σ^2_{zz}	$\mathbf{cov}(\mathbf{Z},\mathbf{q})$	$\mathbf{cov}(\mathbf{z},\mathbf{U})$	$\mathbf{cov}(\mathbf{z}, \mathbf{\theta})$	$\mathbf{cov}(\mathbf{z},\mathbf{t})$
Е _в =	$\mathbf{cov}(\mathbf{q},\mathbf{x})$	$\mathbf{cov}(\mathbf{q},\mathbf{y})$	$\mathbf{cov}(\mathbf{q},\mathbf{z})$	σ^2_{qq}	$\mathbf{cov}(\mathbf{q},\mathbf{U})$	$\mathbf{cov}(\mathbf{q}, \mathbf{ heta})$	$\mathbf{cov}(\mathbf{q,t})$
	$\mathbf{cov}(\mathbf{U},\mathbf{x})$	$\mathbf{cov}(\mathbf{U},\mathbf{y})$	$\mathbf{cov}(\mathbf{U},\mathbf{z})$	$\mathbf{cov}(\mathbf{U},\mathbf{q})$	$\sigma_{\text{UU}}^{\text{2}}$	$\mathbf{cov}(\mathbf{U}, \mathbf{\theta})$	$\mathbf{cov}(\mathbf{U},\mathbf{t})$
-	$\mathbf{cov}(\mathbf{\theta}, \mathbf{x})$	$\mathbf{cov}(\mathbf{ heta},\mathbf{y})$	$\mathbf{cov}(\mathbf{\theta}, \mathbf{z})$	$\mathbf{cov}(\mathbf{\theta},\mathbf{q})$	$\mathbf{cov}(\mathbf{\theta}, \mathbf{U})$	$\sigma^{\rm 2}_{_{\theta\theta}}$	$\mathbf{cov}(\mathbf{ heta},\mathbf{t})$
-	$\mathbf{cov}(\mathbf{t}, \mathbf{x})$	$\mathbf{cov}(\mathbf{t},\mathbf{y})$	$\mathbf{cov}(\mathbf{t}, \mathbf{z})$	$\mathbf{cov}(\mathbf{t},\mathbf{q})$	$\mathbf{cov}(\mathbf{t},\mathbf{U})$	$\mathbf{cov}(\mathbf{t}, \mathbf{\theta})$	σ_{tt}^{2}

- Chemical, Biological, Radioactive, or Nuclear (CBRN) Source Term Estimation (STE) examples
 - High quality meteorological data
 - Poor quality meteorological data
- Utilizing information on uncertainty in observations
 - Cost function visualization and scaling
 - STE variable uncertainty relations
- Uncertainty mapping
 - Physics-based method (uncertainty are inputs to constrain adjoint)
 - Ensemble-based method (adjoint to define the initial uncertainty)

Background Error Covariance Matrix

(Instantaneous Release Example)

Physics-Based Method

2D Visualization

NCAR/RAL - National Security Applications Program

Exploiting Uncertainty Relationships

(Meteorological Uncertainty)

- Use wind variability to constrain location
 - Trend
 - Plume meander
 - Plume diffusion
- Can we filter the winds to distinguish the meander and diffusion?

Deriving Wind Direction Uncertainty

(FFT07 Trial 54)

Inversion and Scaling

$$\sigma_{xx} = \sigma_{UU} \times \sigma_{tt},$$

$$\sigma_{yy} = \sigma_{xx} \sin\left(\frac{\sigma_{\theta\theta}}{2}\right)$$

$$\mathbf{E}_{B} = \begin{bmatrix} \sigma_{UU} \times \sigma_{tt} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \left[(\sigma_{UU} \times \sigma_{tt}) \times \sigma_{xx} \sin\left(\frac{\sigma_{\theta\theta}}{2}\right) \right]^{2} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \sigma_{s}^{2} \end{bmatrix}$$

Leveraged 3 Uncertainties to Bind 2 Variables

NCAR/RAL - National Security Applications Program

Cost Function Comparison

Unconstrained Minimization

$$2\mathbf{J} = \left[\frac{\mathbf{q}_{s}^{bck} - \mathbf{q}_{s}}{\sigma^{q}}\right]^{2} + \left[\frac{\mathbf{x}_{s}^{bck} - \mathbf{x}_{s}}{\sigma^{x}}\right]^{2} + \left[\frac{\mathbf{y}_{s}^{bck} - \mathbf{y}_{s}}{\sigma^{y}}\right]^{2} + \left[\frac{\mathbf{z}_{s}^{bck} - \mathbf{z}_{s}}{\sigma^{z}}\right]^{2} + \left[\frac{\mathbf{t}_{r}^{bck} - \mathbf{t}_{r}}{\sigma^{t}}\right]^{2} + \left[\frac{\mathbf{U}_{e}^{bck} - \mathbf{U}_{e}}{\sigma^{\theta}}\right]^{2} + \left[\frac{\mathbf{\theta}_{e}^{bck} - \mathbf{\theta}_{e}}{\sigma^{\theta}}\right]^{2} + \left[\frac{\mathbf{C}^{obs}(\mathbf{t}) - \mathbf{C}(\mathbf{t})}{\sigma^{obs}}\right]^{2}$$

NCAR/RAL - National Security Applications Program

Cost Function Comparison

Constrained Minimization Unconstrained **Minimization** By Location (x_p, y_p) 300 240 220 250 200 200 180 Value 061 150 140 to O 2000 100-120 100 50 -112.977 0. -112.976 -112.975 -112.976 40.096 -112.974 -112.974 40.094 -112.972 40.000 + $\left[\frac{\mathbf{t}_{r}^{\text{bck}} - \mathbf{t}_{r}}{\sigma^{\text{t}}}\right]^{2}$ + $\left[\frac{\mathbf{U}_{e}^{\text{bck}} - \mathbf{U}_{e}}{\sigma^{\text{U}}}\right]^{2}$ + $\left[\frac{\mathbf{\theta}_{e}^{\text{bck}} - \mathbf{\theta}_{e}}{\sigma^{\theta}}\right]$ $2J = \left| \frac{q_s^{bck}}{q_s} \right|$ $C^{obs}(\underline{t})$ $\mathbf{y}_{s}^{bck} - \mathbf{y}_{s}$ $\left[\frac{\mathbf{Z}_{s}^{bck} - \mathbf{Z}_{s}}{2} \right]^{2}$,obs NCAR/RAL - National Security Applications Program Luna M. Rodriguez – Fukushima Workshop Boulder, CO 29

February 23rd, 2012

Cost Function Comparison

NCAR/RAL - National Security Applications Program

- Chemical, Biological, Radioactive, or Nuclear (CBRN) Source Term Estimation (STE) examples
 - High quality meteorological data
 - Poor quality meteorological data
- Utilizing information on uncertainty in observations
 - Cost function visualization and scaling
 - STE variable uncertainty relations
- Uncertainty mapping
 - Physics-based method (uncertainty are inputs to constrain adjoint)
 - Ensemble-based method (adjoint to define the initial uncertainty)

Background Error Covariance Matrix

(Mapping Uncertainty Directly Via Adjoint)

Background Error Covariance Matrix

(Mapping Uncertainty Directly Via Adjoint)

NCAR/RAL - National Security Applications Program

NCAR

Conclusion

NCAR/RAL - National Security Applications Program