

Session 1: Back-Trajectory Methods

08 February, 2012

Andrew Annunzio, Paul Bieringer, George Bieberbach, Ryan Cabell, Jon Hurst

National Center for Atmospheric Research (NCAR) Boulder CO

NCAR/RAL - National Security Applications Program

Advantages

- Easy to implement and computationally efficient
 - Conceptual technique
 - Ideal for emergency response as opposed to retrospective analysis
 - Works seamlessly across many meteorological scales of motion
 - Can incorporate particle effects of different contaminants
- Backward trajectories (Lagrangian), are defined by the flow field
 - Offline
- Flexible
 - Same model could be used in a simple or expert mode depending on which information you use or search for
 - Can readily handle multiple release events

- Lagrangian Particle Back Tracking
 - Weather data needs to be very dense
 - Need to quantify uncertainty within this method
 - Uncertainty in the predicted source location
 - Uncertainty in sensor measurement as well as meteorological data that defines the particle trajectory
 - Need to define the mass through forward matching
- Reverse Eulerian/Lagrangian Modeling
 - Need to quantify uncertainty within this method

Uncertainty in sensor measurement as well as meteorological data that defines the particle trajectory (need to map out the hazard release area).

- Reverse Lagrangian Puff Modeling
 - Need to have a dense concentration sensor array
 - Requires function fitting to determine puff trend

NCAR/RAL - National Security Applications Program

Path Forward (1) (Improving the techniques)

- Ways to improve the backward trajectory method
 - Such improvements degrade computational efficiency
- If the method can incorporate uncertainty in
 - Meteorological measurements
 - NWP output
 - Model parameterizations
 - Contaminant sensor measurement
- No clear path forward on improving mass estimates and time varying sources

Path Forward (2) (Emergency Response)

- For emergency response, quick estimates of the hazard area are crucial
- Due to computational efficiency, we can include additional observations as they come online
 - Thus refining the hazard area
 - Providing additional information for contaminant mitigation
- Thus providing good background estimate for computationally intensive models
- Also, with forward modeling give quick solutions for mitigation techniques and additional targeted observations
- Need to ensure that consistency is maintained as one uses coarser resolution meteorological data in space and time

NCAR/RAL - National Security Applications Program