UNCERTAINTY AND PHYSICAL PROCESS MODELING

Define current state of:

(UNCERTAINTY AND PHYSICAL PROCESS MODELING)

Key Points from Scientific Briefings

- Uncertaintyⁿ
 - Physical
 - Meteorological
 - Transport and Dispersion

Physical Processes Uncertainty

- Van and others:
 - Wet and Dry deposition
 - Uncertainty of Wet > Dry
 - Wet: efficient process and difficult to predict
 - » Prediction of precipitation rates
 - » Precipitation scavenging
 - » For open space there are equations
 - » Complexity increases for urban and canopy
 - Dry: less efficient deposition process
 - » Complexity includes: particle size, roughness, surface type, moisture level, particle or gas, reactive?
 - Weathering effects: surface type, precipitation, moisture
 - Deposition Air ⇔ Ocean transfers
 - Resuspension

Meteorological (Regional) Uncertainty

- Dr. Liu and others:
 - Terrain
 - Land use
 - Soil
 - Multi-scale interactions (nesting models)
 - Spin up model time (dynamic and diabatic)
 - Short term zero-12 hr forecasts are difficult
 - Data assimilation
 - Sparse and irregular observations

Transport & Dispersion Uncertainty

- Surface Conditions
 - Wind field
 - Speed
 - Direction
 - Turbulence
 - Stability
 - Stable boundary layer
 - Moisture
- Boundary layer parameters
 - Depth (zi)
 - Surface heat flux
 - Roughness length
 - Surface type (canopy, urban, ...)
 - Terrain

Expectations of Uncertainty Analysis

- Forward modeling: to provide probabilistic hazard zones (Lethal Concentration threshold's)
 - Uncertainty:
 - Source term
 - Weather
 - Transport and dispersion
- Becomes incorporated into the probabilistic STE methods (example: Priors for a Bayesians, sigmas for adjoint, population range for GA)
- Communicating risk and probability to decision makers and public

Path forward:

- Radar data for better precipitation information and deposition information
- Assimilation of precipitation data (radar and ground based measurements) into weather prediction
- Better methods (algorithms) for incorporating particles and gases on surfaces (canopies, open area, urban)
- Weather and resuspension that account for surface types, precipitation, moisture, soil type, etc... Use Fukushima data as reanalysis.

Path forward:

- Incorporate more types data and account for different Temporal and Spatial observations and of different averaging times
 - Types:
 - Surface
 - Wind profilers
 - Satellite
 - Aircraft
- Using ensemble forecasting in NWP models
- To overcome multi-scale: use nesting from synoptic to meso to micro

Near term operational improvements:

- Higher resolution meteorological and dispersion simulations in real time
- Real-time feed for observations including radar, satellite, and aircraft
- Incorporate spatial land-use databases in T&D and deposition models e.g. deposition resistance
- Deposition of particles and gases, e.g. effect of reactivity of the gases, roughness length, and urban/forest canopy
- Test current and new algorithms in a Fukushima reanalysis