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Aviation Turbulence: Challenges 

1. Nature of turbulent motion is not well-understood  
– Sir Horace Lamb, Hydrodynamics, 1932, Art 365: 

"Turbulent Motion.  It remains to call attention to the 
chief outstanding difficulty of our subject." 

– Sir Graham Sutton, The Challenge of the Atmosphere, 
1962, "turbulence, the state of motion which, by its 
complexity, constitutes the outstanding difficulty in 
hydrodynamics” 

– J. S. Turner, Buoyancy Effects in Fluids, 1973, “Patches 
of turbulence in the ocean or atmosphere can arise as a 
result of the superposition of motions from many 
sources and on many scales.  A completely 
deterministic theory is therefore unlikely…” 
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Challenges (cont.) 

2. Scale of turbulence is too small to                  
 actually forecast 
• Very small scale (10s m- few km) 

compared to other motions in the 
atmosphere that are routinely observed 
and forecast 

• Forecasts typically use grid point model 
to represent continuous atmosphere 
– 10s km grid spacing so turbulence processes 

are subgrid scale and must be parameterized 
– No option to directly forecast 

• 5000km X 5000km X 25km CONUS 
domain @ 25m resolution = 2x105 X 2x105 
X 103 = 40,000 Gigawords/variable!! 

• Alternatively, can postprocess using 
operational NWP model to diagnose 
turbulence potential (implicitly assumes 
downscale cascade) -> GTG etc. 

 

Grid spacing ~ 25 km 

~10 km 

~1 km NWP grid 
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Small scale nature of turbulent events 
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Challenges (cont.) 
3. Routine observations for 
 verification are lacking 
• Routine ground-based 

observations too sparse 
• In situ observations (pilot reports or 

PIREPS) 
– Nonuniform in space and time 
– Subjective (“Light”, “moderate”, 

“severe”, “extreme”) 
– Position and time inaccuracies 
– Aircraft dependent 
– Pilots try to avoid it 
– Information about clouds is usually 

not recorded 
– Wake vortices contaminate results 

(6x10-4 critical encounters/flight hr) 

day/hour 

Schumann&Sharman JAircraft 2014 



Challenges (cont.) 
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UAL 757+DAL737+DAL767+SWA737 
24hrs 25 Aug 2014 

Current insitu EDR reports are also nonuniformly distributed  
and are insufficient density, don’t report turbulence type 



Challenges (cont.) 
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UAL 757+DAL737+DAL767+SWA737 
1hr 1800 UTC 25 Aug 2014 



Challenges (cont.) 

4.  Large scale forecasts errors 
– There are inaccuracies in the 

large scale forecasts  
– These increase with lead time 
– Can use ensembles to help 

quantify errors 
5. Turbulence is a rare event!   

– ~ 96% - 98% is “smooth” 
– “Moderate” <~ 10-3 

– “Severe” <~ 10-4 
– Based on insitu edr estimates 
– Biased since pilots avoid 

(possibly smooth ~ 85%?)* 
 
Others…. 
 

Theoretical 
(Frehlich and Sharman 
MWR 2004) 0.982 

moderate 
severe 

*Sharman et al., JAMC 2014 



Aviation Turbulence R&D Needs 
• Better/more comprehensive observations of 

aircraft scale turbulence 
– In situ turbulence estimates 
– Ground-based and airborne remote sensing techniques, 

including satellite-based technologies 
• Better nowcasting & forecasting products 

– Need nowcast products for tactical avoidance of turbulence 
patches that were not properly forecast 

– This may be provided by human-over-the-loop checks 
• Better understanding of turbulence generation/ 

advection and propagation mechanisms 
– Analyses of data gathered in field programs 
– Case studies using high-resolution simulations 
– Can be used to formulate improved turbulence forecast 

algorithms 
• Need to get information to the cockpit 
• Need industry, govt labs, university collaborations 
 
 



Candidate observation enhancements  
 

• More reliable PIREPs 
• Need industry collaboration 

• More in situ edr data 
– Global, night 
– Combine and standardize sources 
– Develop reliable PIREPs to EDR maps 
– Optimize data gathering 
– Need industry collaboration 

• Provide access to on-board 
turbulence detection systems 
(forward looking radar) 
• Need industry collaboration 

• Develop/implement lidar-based on-
board detection systems, e.g. 
DELICAT 

• High resolution rawinsondes 
– 800 globally, 90 US 
– 6-sec data is available (~25 m) 

• Satellite feature detectors 

Clayson&Kantha, JTEC, 2008 

edr=0.1 



Satellite feature detectors: anvil 
bands and gravity waves 
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MODIS image of convectively-induced gravity 
waves.   
Courtesy Wayne Feltz UW CIMSS 

17 June 2005 Moderate and severe turbulence 
insitu EDR measurements near Transverse 
(Radial) MCS Outflow Bands over central US 
- Trier & Sharman (2009, MWR) 
- Trier et al. (2010, JAS)   



Better forecasting techniques 
Forecast errors due to  
1.  NWP model errors 
2.  Errors in postprocessing algorithms 
Which is more important? 
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Better forecasting techniques 
Forecast errors due to  
1.  NWP model errors 
2.  Errors in postprocessing algorithms 
Which is more important? 
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Courtesy Ulrich Schumann 



Better forecasting techniques 
Forecast errors due to  
1.  NWP model errors 
2.  Errors in postprocessing algorithms 
Which is more important? 

1. NWP model errors (needs) 
– Higher resolution 

• Grid nesting (horizontal and vertical) 
• Feature following grids 
• Regional models merged into global 

models 
– Refine Turbulence Kinetic Energy 

(TKE) subgrid parameterizations for 
free atmosphere 

– Sensitivity studies 
• To resolution 
• To various model configurations/ 

parameterizations 
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Courtesy Ulrich Schumann 



WRF Simulations of Santa Ana winds over San Diego, 
CA 15 Feb 2013: 4-hr average winds 

Courtesy Rob Fovell, UCLA 



Better forecasting techniques (cont.) 

2.  Reduce errors in postprocessing algorithms 
– Requires more fundamental research 
– Requires better understanding of linkage between 

large scale represented in NWP models and smaller 
scales (waves, turbulence) 

– Need for autotuning of postprocessing algorithms 
when underlying NWP model changes 

– Better combination strategies using AI techniques 
(e.g. GTG, UKMet) 

– Use ensembles of diagnostics, possibly combined 
with NWP ensembles 

• Gives users some idea of confidence in results 
• Makes more sense given random nature of turbulent 

processes 
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GTG Prob > light 

Prob > mod Prob > severe 

Use of diagnostics as ensembles provides 
confidence values (or uncalibrated probabilities)  

0 h forecast valid at 22 Sep 2006 15Z 

Red=.75 

Red=.30 Red=.30 



Better understanding of turbulence 
processes 

• Need more national & international collaboration, esp. 
with university community 

• Use combination of theoretical studies, field programs,  
and high resolution numerical simulations 

• Case studies based on reported incidents or accidents, 
elevated edr data 
– Need airline cooperation 

• Investigate importance of gravity waves and gravity 
wave breaking… 
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Gravity waves and gravity wave  
“breaking” 

• Gravity waves may be 
generated in free atmosphere 
when air is displaced vertically: 
– Flow over mountains 
– Flow over fronts   
– Rapidly growing convection 
– Numerous other processes 

• Gravity waves may break 
leading to turbulence 
 
 
 
 

• Or may be a hazard itself 20 

Courtesy Howie Bluestein 

Courtesy Howie Bluestein 



15 Mar 2006 over Northern CO at FL390: + .8g acceleration, Flight attendant broke wrist, 
Flight diverted to Nebraska 

Clark-Hall simulation of mountain waves and turbulence 

 East-west cross-section, 15 min frames 18Z-23Z   3 km resolution (event – 22:14).  

Simulation shows turbulence associated 
with gravity wave steepening and breaking 

Lines=isentropes 
U (m/s) white |U|<5 m/s cint 5 m/s 



15 Mar 2006 over Northern CO at FL390: + .8g acceleration, Flight attendant broke wrist, 
Flight diverted to Nebraska 

Clark-Hall simulation of mountain waves and turbulence 

 East-west cross-section, 15 min frames 18Z-23Z   3 km resolution (event – 22:14).  

Simulation shows turbulence associated 
with gravity wave steepening and breaking 

Lines=isentropes 
U (m/s) white |U|<5 m/s cint 5 m/s 

Ri < 1 



Example of gravity wave propagation and 
breakdown over a developing thunderstorm 
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Courtesy Todd Lane, U. Melbourne 

Lane and Sharman, JAMC 2008 

 
Some turbulence occurs 
in clear air near cloud 
• Termed convectively-

induced turbulence 
(CIT) 

• Related to gravity 
breaking 
 

Example 
• 10 July 1997 near 

Dickinson, ND. (En-route 
Seattle to JFK).  Boeing 757 
encountered severe 
turbulence while flying 
above a developing 
thunderstorm (and between 
thunderstorms) 

• FL370 (approx 11 km) 
• 22 injuries. 
• +1 to  -1.7 g’s in 10 sec 



Better understanding of 
turbulence processes (cont.) 

• More generally, what is the relation between turbulence 
in-cloud and out-of-cloud? 

 – Gravity waves 
– Wake effects 
– What are 

optimum 
avoidance 
strategies? 
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Green – null 
Yellow – light 
Orange – moderate 
Red – severe  

Actual EDR measurements 
(1 hour, FL200-FL410) 

Courtesy Dragana Zovko-Rajak, U. Melbourne 



Thunderstorm line 
simulation 
8000x1220x334 
@75 m 
 
Lane&Sharman, 
 GRL 2014 

Proportion of along-line volume that is turbulent (TKE>0.25 m2/s2)  

0.1      1       5      10     25      % 

Cloud boundary 0.1g/kg 

Reflectivity boundary 5 dBz 

Vertical velocity @ 10 km (m/s) 
+0.5 
 
 
 
0 
 
 
 
-0.5 
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Need for field programs 

• Need high resolution observations to better understand 
and quantify turbulence processes 

• Ideally this would involve multiple aircraft with high-rate 
measurements and a forward-looking scanning Doppler 
lidar + radiometer, one with dropsondes 

• Should be international collaborative effort 
• Upward-looking radar would also be useful  
• Use GTG forecasts to identify conducive areas/times 
• Compare with simulations after the fact 

● 
Research acs 2,3  

Ri, ε  

Research ac 1  
w/ dropsondes  
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