High-Resolution MPAS Simulations for Analysis of Climate Change Effects on Weather Extremes

ALLISON MICHAELIS, GARY LACKMANN, & WALT ROBINSON

Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University

GEWEX CONVECTION-PERMITTING CLIMATE MODELING WORKSHOP II 6 SEPTEMBER 2018

Motivation

• Current General Circulation Models (GCMs):

Too coarse for TCs, extreme weather events, issues with blocking

- Regional Modeling with Pseudo-Global Warming (PGW):
 Limited by lateral boundary conditions
- High-resolution Time Slice Experiments:
 Can be limited by SST representation

• Our Method:

 MPAS with high-resolution analyzed SSTs using pseudo-PGW/pseudo-time slice methods

Model for Prediction Across Scales (MPAS) Simulations

- MPAS v. 5.1
- Variable resolution mesh: 15-km over NH expanding out to 60-km*
- Physics choices:
 - WSM6 (MP)
 - YSU (PBL)
 - Tiedtke (CP)
 - CAM (radiation)
- Initial conditions and SST field:
 - ERA-Interim Reanalysis

*Thanks to Michael Duda for creating this mesh

Model for Prediction Across Scales (MPAS) Simulations

- Selected 10 simulation years to sample range of ENSO phases
- Simulations run from March 1st of year 1 through mid-May of year 2 first month discarded

Current

Future

MPAS Simulations – Future

Future SST and sea ice fields

 Create pseudo-daily sea ice fields from monthly average CMIP5 ensemble mean – historical and RCP 8.5 future emissions scenario

Model for Prediction Across Scales (MPAS) Simulations

- Selected 10 simulation years to sample range of ENSO phases
- Simulations run from March 1st of year 1 through mid-May of year 2 first month discarded

MPAS Simulations

Completed 10 sets (current and future) of simulations
 2010, 1988, 2011, 2013, 2001, 2005, 1992, 1994, 2015, 1997

Output has been post-processed

- Interpolate fields (temperature, height, winds, etc.) to pressure levels
- Interpolate output to a 0.15° x 0.15° lat-lon grid
 - × Saving output for Northern Hemisphere only

Select results shown today from (mostly) present-day simulations

- o 2-m temperature, zonal mean temperature
- Midlatitude jet features, tropical precipitation
- Tropical cyclones

Tropical Cyclone Tracking

TempestExtremes tracking algorithm (Ullrich and Zarzycki 2017)

• Tunable Parameters:

- 2 hPa closed SLP contour within 2° of center
- -15 m closed 300–500-hPa thickness contour within 6° of center
 - × Maximum offset from SLP minimum: 1.1°
- Maximum search latitude for candidate storms: 60°N
- Maximum travel distance within 6-h: 6°
- Minimum lifetime: 2 days
- Allows for up to 12-h gaps in trajectories
- Must be over water for at least 12-h
- Must have at least 2 (non-consecutive) days of 10-m winds \geq 14 m/s (~31 mph)

Summary

- Future MPAS simulations reproduce two key warming signatures
 Arctic amplification and tropical upper-tropospheric warming
- Large-scale, seasonal mean fields realistically represented in MPAS simulations
 - o e.g., midlatitude storm tracks, tropical precipitation
- TC activity generated in all Northern Hemispheric basins
 Storms simulated across full intensity spectrum

Ongoing Projects

Extratropical Transition of TCs

Extreme Precipitation along US East Coast

TC Seasonality

Persistent Anomalies

GFS-Parallel 500mb Geopotential Height (dam) & Anomaly (m) (based on CFSR 1981-2010 Climatology) Init: 12z Nov 10 2014 Forecast Hour: [96] valid at 12z Fri, Nov 14 2014 Levi Cowan | trepicaltidbits.com

