
Community infrastructure for facilitating improvement
and testing of physical parameterizations:

the Common Community Physics Package (CCPP)

Dom Heinzeller1,3, Ligia Bernardet1,3, Grant Firl2,3, Laurie Carson2,3,
Man Zhang1,3, Lulin Xue2, Don Stark2,3, Jimy Dudhia2, Dave Gill2

1CU/CIRES at NOAA/ESRL Global Systems Division
2National Center for Atmospheric Research

3Developmental Testbed Center

Representing many contributors
• GMTB (Tim Brown, Chris Harrop, Gerard Ketefian,

Pedro Jimenez, Julie Schramm, Lulin Xue)
• EMC (V. Tallapragada, M. Iredell), GFDL (R. Benson)
• ESPC PI (Jim Doyle and the group)

GEWEX Convection-Permitting Climate Modeling Workshop II, 09/06/2018

An atmospheric model zoo

2

FIM

FV3

CESM

MPAS

GSM (GFS)
COAMPS

UM (Unified Model)
NEPTUNE

… WRF (ARW,NMM)

Model unification misunderstood

3

FIM

FV3

CESM

MPAS

GSM (GFS)
COAMPS

UM (Unified Model)
NEPTUNE

… WRF (ARW,NMM)

Under the hood: physics & drivers

4

FIM

FV3

CESM

MPAS

GSM (GFS)
COAMPS

UM (Unified Model)
NEPTUNE

… WRF (ARW,NMM)

4000

2000

6000

5000

22000

Lines of code in physics drivers (w/o comments)

6

Area within the
Developmental Testbed
Center (DTC) created to
accelerate transition of
physics developments by the
community onto NOAA’s
Unified Forecast System

https://dtcenter.org/testing-evaluation/global-model-test-bed

Approach
 Infrastructure for development of parameterizations/suites

 Development of hierarchical physics testbed

 Assessment of physics innovations

Global Model Test Bed (GMTB)

C
ou

rt
es

y
Li

gi
a

Be
rn

ar
de

t

Common Community Physics Package
The Common Community Physics Package (CCPP) consists of an
infrastructure component ccpp-framework and a collection of
compliant physics suites ccpp-physics.

Driving principles:
 Readily available and well supported: open source, on Github,

accepting external contributions (review/approval process)

 Model-agnostic to enable collaboration and accelerate innovations

 Documented interfaces (metadata) facilitate using/enhancing existing
schemes, adding new schemes or transfer them between models

 Physics suite construct is important, but the CCPP must enable
easy interchange of schemes within a suite (need for interstitial code)

7

 Physics schemes caps: auto-generated from metadata

 Host model cap: “handcrafted”, include auto-generated code (CPP)

CCPP within the model system

8

ccpp-physics

ccpp-framework

Key features of the CCPP
 Runtime configuration:

suite definition file (XML)

 Ordering: user-defined
order of execution of schemes

 Subcycling: schemes can be
called at higher frequency than
others or than dynamics

 Grouping: schemes can be
called in groups with other
computations in between
(e.g. dycore, coupling)

9

<suite name="GFS_2017">

...

<group name="radiation">
<scheme>GFS_rrtmg_pre</scheme>
<scheme>rrtmg_sw_pre</scheme>
<scheme>rrtmg_sw</scheme>
<scheme>rrtmg_sw_post</scheme>
<scheme>rrtmg_lw_pre</scheme>
<scheme>rrtmg_lw</scheme>
<scheme>rrtmg_lw_post</scheme>
<scheme>GFS_rrtmg_post</scheme>

</group>

...

</suite>

suite interstitial scheme interstitial scheme

module scheme_template
contains

subroutine scheme_template_init()
end subroutine scheme_template_init

subroutine scheme_template_finalize()
end subroutine scheme_template_finalize

!>\section arg_table_scheme_template_run Argument Table
!!| local_name | standard_name | long_name | units | rank | type | kind | intent | optional |
!!|------------|---------------|-----------|-------|------|-----------|-------|--------|----------|
!!| errmsg | error_message | error msg | none | 0 | character | len=* | out | F |
!!| errflg | error_flag | error flg | flag | 0 | integer | | out | F |
!!| prs | air_pressure | air pres. | Pa | 2 | real | phys | inout | F |
!!

subroutine scheme_template_run(errmsg,errflg,prs)
implicit none
character(len=*), intent(out) :: errmsg
integer, intent(out) :: errflg
real(kind=phys), intent(inout) :: prs(:,:)
...

end subroutine scheme_template_run
end module scheme_template

A CCPP-compliant physics scheme

10

Beware! This format will change
in the near future (NCAR folks

have their hands on it ...).

1. Add new scheme to CCPP prebuild configuration (Python)

scheme_files = {

"existingscheme.F90" : ["physics", "dynamics"],

"mynewscheme.F90" : ["physics"],

"otherexistingscheme.F90" : ["physics"],

}

2. Compile (CCPP)

3. Add new scheme to suite definition file (also runs init/finalize)

<scheme>existingscheme</scheme>

<scheme>mynewscheme</scheme>

<scheme>otherexistingscheme</scheme>

Adding a parameterization is easy!

11

Different sets of
physics in a model

Metadata tables:
variables requested

Metadata tables:
variables provided

ccpp-data: lookup table standard_name → address of variable in memory

Metadata tables on host model side

12

CCPP
prebuild

ccpp
data

ccpp-physics

ccpp-framework

CCPP’s short past and long future
 First release of CCPP with GMTB Single Column Model in April 2018

(GFS physics), second release in August 2018 (with GFDL microphysics)

 Release with FV3 2018/2019 with 2020/2021 physics candidates
Access and help: https://dtcenter.org/gmtb/users/ccpp/index.php - gmtb-help@ucar.edu

 NOAA and NCAR agreed to collaborate on ccpp-framework:
enables interoperability of physics between NOAA/NCAR models
 Metadata updates: vertical direction, index ordering, …
 Automatic transforms, unit conversions, performance optimization

ccpp-framework

NOAA
physics

NCAR
physics

common
physics

https://dtcenter.org/gmtb/users/ccpp/index.php
mailto:gmtb-help@ucar.edu

Bonus material

14

Suppose one wants to diagnose a loss in conservation of
a specific variable that gets used and modified in many places.

1. Create a new “scheme” writing diagnostic output to screen/file

2. Add scheme to relevant places in suite definition file
...

<scheme>GFS_examplescheme</scheme>
<scheme>GFS_diagtoscreen</scheme>
...
<scheme>GFS_anotherexamplescheme</scheme>
<scheme>GFS_diagtoscreen</scheme>
...

3. No tinkering with host model code (driver, …)!

Side-effect: debugging made easy

15

Interstitital code
 “Suite-drivers” are called in current infrastructure (e.g. FV3):

 Suite Definition File instructs CCPP infrastructure to call individual
schemes; “interstitial” code within suite drivers ➔ interstitial schemes

slide stolen from Grant Firl 16

 Python script ccpp_prebuild.py
 requires metadata tables on both sides
 checks requested vs provided variables

by standard_name
 checks units, rank, type (more to come)
 creates Fortran code that adds

pointers to the host model variables
and stores them in the ccpp-data
structure (ccpp_{fields,modules}.inc)

 creates caps for physics schemes
 populates makefiles with schemes and caps

Magic behind the scenes

17

Metadata tables:
variables requested

Metadata tables:
variables provided

CCPP
prebuild

 Python script ccpp_prebuild.py
 does all the magic before/at build time

 Model developers need to
 create ccpp_prebuild_MODEL.py config
 include auto-generated makefiles

(and ccpp_prebuild.py) in build system
 write host model cap that contains

CCPP run calls and include statements
for auto-generated code (e.g. ccpp_fields.inc)

 manage memory for cdata structure

How to hook up CCPP w/ host model

18

Metadata tables:
variables requested

Metadata tables:
variables provided

CCPP
prebuild

	Community infrastructure for facilitating improvement�and testing of physical parameterizations:�the Common Community Physics Package (CCPP)
	An atmospheric model zoo
	Model unification misunderstood
	Under the hood: physics & drivers
	Slide Number 6
	Common Community Physics Package
	CCPP within the model system
	Key features of the CCPP
	A CCPP-compliant physics scheme
	Adding a parameterization is easy!
	Metadata tables on host model side
	CCPP’s short past and long future
	Bonus material
	Side-effect: debugging made easy
	Interstitital code
	Magic behind the scenes
	How to hook up CCPP w/ host model

