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An atmospheric model zoo
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Model unification misunderstood
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Under the hood: physics & drivers
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Area within the 
Developmental Testbed 
Center (DTC) created to 
accelerate transition of 
physics developments by the 
community onto  NOAA’s 
Unified Forecast System

https://dtcenter.org/testing-evaluation/global-model-test-bed

Approach
 Infrastructure for development of parameterizations/suites

 Development of hierarchical physics testbed

 Assessment of physics innovations

Global Model Test Bed (GMTB)
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Common Community Physics Package
The Common Community Physics Package (CCPP) consists of an 
infrastructure component ccpp-framework and a collection of 
compliant physics suites ccpp-physics.

Driving principles:
 Readily available and well supported: open source, on Github,

accepting external contributions (review/approval process)

 Model-agnostic to enable collaboration and accelerate innovations

 Documented interfaces (metadata) facilitate using/enhancing existing 
schemes, adding new schemes or transfer them between models

 Physics suite construct is important, but the CCPP must enable
easy interchange of schemes within a suite (need for interstitial code)
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 Physics schemes caps: auto-generated from metadata

 Host model cap: “handcrafted”, include auto-generated code (CPP)

CCPP within the model system

8

ccpp-physics

ccpp-framework



Key features of the CCPP
 Runtime configuration:

suite definition file (XML)

 Ordering: user-defined
order of execution of schemes

 Subcycling: schemes can be
called at higher frequency than
others or than dynamics

 Grouping: schemes can be
called in groups with other
computations in between
(e.g. dycore, coupling)
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<suite name="GFS_2017">

...

<group name="radiation">
<scheme>GFS_rrtmg_pre</scheme>
<scheme>rrtmg_sw_pre</scheme>
<scheme>rrtmg_sw</scheme>
<scheme>rrtmg_sw_post</scheme>
<scheme>rrtmg_lw_pre</scheme>
<scheme>rrtmg_lw</scheme>
<scheme>rrtmg_lw_post</scheme>
<scheme>GFS_rrtmg_post</scheme>

</group>

...

</suite>

suite interstitial scheme interstitial scheme



module scheme_template
contains

subroutine scheme_template_init()
end subroutine scheme_template_init

subroutine scheme_template_finalize()
end subroutine scheme_template_finalize

!>\section arg_table_scheme_template_run Argument Table
!!| local_name | standard_name | long_name | units | rank | type      | kind  | intent | optional |
!!|------------|---------------|-----------|-------|------|-----------|-------|--------|----------|
!!| errmsg | error_message | error msg | none  |    0 | character | len=* | out    | F        |
!!| errflg | error_flag | error flg | flag  |    0 | integer   |       | out    | F        | 
!!| prs | air_pressure | air pres. | Pa    |    2 | real      | phys | inout | F        |
!!

subroutine scheme_template_run(errmsg,errflg,prs)
implicit none
character(len=*), intent(  out) :: errmsg
integer,          intent(  out) :: errflg
real(kind=phys),  intent(inout) :: prs(:,:)
...

end subroutine scheme_template_run
end module scheme_template

A CCPP-compliant physics scheme 
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Beware! This format will change 
in the near future (NCAR folks 

have their hands on it ...).



1. Add new scheme to CCPP prebuild configuration (Python)

scheme_files = {

"existingscheme.F90" : ["physics", "dynamics"],

"mynewscheme.F90"          : ["physics"],

"otherexistingscheme.F90"  : ["physics"],

}

2. Compile (CCPP)

3. Add new scheme to suite definition file (also runs init/finalize)

<scheme>existingscheme</scheme>

<scheme>mynewscheme</scheme>

<scheme>otherexistingscheme</scheme>

Adding a parameterization is easy!

11

Different sets of 
physics in a model



Metadata tables:
variables requested

Metadata tables:
variables provided

ccpp-data: lookup table standard_name → address of variable in memory

Metadata tables on host model side
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CCPP’s short past and long future
 First release of CCPP with GMTB Single Column Model in April 2018 

(GFS physics), second release in August 2018 (with GFDL microphysics)

 Release with FV3 2018/2019 with 2020/2021 physics candidates
Access and help: https://dtcenter.org/gmtb/users/ccpp/index.php - gmtb-help@ucar.edu

 NOAA and NCAR agreed to collaborate on ccpp-framework:
enables interoperability of physics between NOAA/NCAR models
 Metadata updates: vertical direction, index ordering, …
 Automatic transforms, unit conversions, performance optimization

ccpp-framework

NOAA
physics

NCAR
physics

common
physics

https://dtcenter.org/gmtb/users/ccpp/index.php
mailto:gmtb-help@ucar.edu


Bonus material
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Suppose one wants to diagnose a loss in conservation of
a specific variable that gets used and modified in many places.

1. Create a new “scheme” writing diagnostic output to screen/file

2. Add scheme to relevant places in suite definition file
...

<scheme>GFS_examplescheme</scheme>
<scheme>GFS_diagtoscreen</scheme>
...
<scheme>GFS_anotherexamplescheme</scheme>
<scheme>GFS_diagtoscreen</scheme>
...

3. No tinkering with host model code (driver, …)!

Side-effect: debugging made easy
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Interstitital code
 “Suite-drivers” are called in current infrastructure (e.g. FV3):

 Suite Definition File instructs CCPP infrastructure to call individual 
schemes; “interstitial” code within suite drivers ➔ interstitial schemes

slide stolen from Grant Firl 16



 Python script ccpp_prebuild.py
 requires metadata tables on both sides
 checks requested vs provided variables

by standard_name
 checks units, rank, type (more to come)
 creates Fortran code that adds

pointers to the host model variables
and stores them in the ccpp-data
structure (ccpp_{fields,modules}.inc)

 creates caps for physics schemes
 populates makefiles with schemes and caps

Magic behind the scenes
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 Python script ccpp_prebuild.py
 does all the magic before/at build time

 Model developers need to
 create ccpp_prebuild_MODEL.py config
 include auto-generated makefiles

(and ccpp_prebuild.py) in build system
 write host model cap that contains 

CCPP run calls and include statements
for auto-generated code (e.g. ccpp_fields.inc)

 manage memory for cdata structure

How to hook up CCPP w/ host model
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