The Added Value of Convection-permitting Simulations for Dynamically Downscaling Precipitation Extremes

Andre R. Erler^{1,2} W. Richard Peltier²

¹Aquanty Inc.

²Department of Physics, University of Toronto

September 4th, 2018

Outline

Introduction: Dynamical Downscaling Models and Experimental Setup

Very High Resolution Climate Simulations Observed and Modeled Precipitation

Extreme Value Analysis

Clustering of Station Observations Dependence on Model Resolution

End-of-Century Precipitation Projections

The Role of Convective Precipitation

NOR SEASE SER NOR

Outline

Introduction: Dynamical Downscaling Models and Experimental Setup

Very High Resolution Climate Simulations Observed and Modeled Precipitation

Extreme Value Analysis

Clustering of Station Observations Dependence on Model Resolution

End-of-Century Precipitation Projections The Role of Convective Precipitation

Dynamical Downscaling using WRF

The Weather Research and Forecast model (WRF) is a state of the art NWP model and can be used as a regional climate model.

Topography and WRF Domains

WRF : 30 km, 10 km & 3 km over North America

ERA-I : $\sim 0.7^{\circ} \approx 70$ km resolution CESM : $\sim 1^{\circ} \approx 100$ km resolution

Boundary Conditions

- ► ERA Interim Reanalysis
- CESM Climate Model (for projection)

JI DOG

Andre R. Erler (aerler@aquanty.com) Precipitation Extremes in Convection-permitting Simulations

Dynamical Downscaling using WRF

The Weather Research and Forecast model (WRF) is a state of the art NWP model and can be used as a regional climate model.

Topography and WRF Domains

WRF : 30 km, 10 km & 3 km over North America

ERA-I : $\sim 0.7^{\circ} \approx 70$ km resolution

 $\mathsf{CESM}\,$: $\sim1^\circ\approx100\,\mathsf{km}$ resolution

Boundary Conditions

- ► ERA Interim Reanalysis
- CESM Climate Model (for projection)

E SQC

Andre R. Erler (aerler@aquanty.com) Precipitation Extremes in Convection-permitting Simulations

High Resolution Climate Simulations

WRF Domains

- 10 km Western
 Canada
- ▶ 3 km BC & Alberta

- Non-hydrostatic, finitedifference dynamical core
- Noah LSM, RRTMG radiation, Morrison-2-Moment MP, Grell-3 cumulus (except 3 km)

Topographic Height [km]

and inner-most WRF domain (3 km)

▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

High Resolution Climate Simulations

WRF Domains

- 10 km Western Canada
- ▶ 3 km BC & Alberta

- Non-hydrostatic, finitedifference dynamical core
- Noah LSM, RRTMG radiation, Morrison-2-Moment MP, Grell-3 cumulus (except 3 km)

Topographic Height [km]

Intermediate WRF domain (10 km) and inner-most WRF domain (3 km)

向 ト イヨト イヨト ヨヨ のくべ

Outline

Introduction: Dynamical Downscaling Models and Experimental Setup

Very High Resolution Climate Simulations Observed and Modeled Precipitation

Extreme Value Analysis

Clustering of Station Observations Dependence on Model Resolution

End-of-Century Precipitation Projections The Role of Convective Precipitation

A B A B A B B A Q A

Annual average precipitation over Western Canada (Merged Dataset)

Precipitation Climatology (PRISM & GPCC)

Merged Observations

Combined data from PRISM (1 km) and GPCC (0.25°)

- Very high precipitation in the Coast Mountains
- Interior Plateau and the lee of the Rockies are very dry
- Precipitation gradient stronger in winter, weaker in summer

E SQC

Annual average precipitation over Western Canada (Merged Dataset) General precipitation pattern

Merged Observations

Combined data from PRISM (1 km) and GPCC (0.25°)

- Very high precipitation in the Coast Mountains
- Interior Plateau and the lee of the Rockies are very dry
- Precipitation gradient stronger in winter, weaker in summer

EL OQO

CESM (100km, 60yr)

Annual average precipitation over Western Canada (CESM at 100 km)

Dependence on Resolution

Interior Plateau

- At 30 km the Interior Plateau and Coast Mountains appear
- At 10 km the Rocky Mountain Trench emerges
- At 3 km elevations over 3000 m are resolved, and rain shadows improve

WRF 3km (1979-1994, ERA-I)

Annual average precipitation over Western Canada (WRF at 30 km)

Dependence on Resolution

Interior Plateau

- At 30 km the Interior Plateau and Coast Mountains appear
- At 10 km the Rocky Mountain Trench emerges
- At 3 km elevations over 3000 m are resolved, and rain shadows improve

WRF 3km (1979-1994, ERA-I)

Annual average precipitation over Western Canada (WRF at 10 km)

Dependence on Resolution

Interior Plateau

- At 30 km the Interior Plateau and Coast Mountains appear
- At 10 km the Rocky Mountain Trench emerges
- At 3 km elevations over 3000 m are resolved, and rain shadows improve

WRF 3km (1979-1994, ERA-I)

Annual average precipitation over Western Canada (WRF at 3 km)

Dependence on Resolution

Interior Plateau

- At 30 km the Interior Plateau and Coast Mountains appear
- At 10 km the Rocky Mountain Trench emerges
- At 3 km elevations over 3000 m are resolved, and rain shadows improve

Annual Total Precipitation Rate [kam⁻²dav⁻¹]

Mean Precipitation Bias by Resolution

Annual Precipitation

- Rain shadow improves with resolution...
- ... but is still underestimated

Large Biases

A systematic positive biases exists on top of inadequate resolution

CESM generally has a negative bias in summer.

WRF 3km (15yr, ERA-I)

CESM (100km, 60yr)

Andre R. Erler (aerler@aquanty.com)

Mean Precipitation Bias by Resolution

Relative Biases w.r.t. Merged Observations

- Rain shadow improves with resolution...
- ... but is still underestimated

Large Biases

A systematic positive biases exists on top of inadequate resolution

CESM generally has a negative bias in summer.

Winter Total Precipitation Rate Fractions [%]

Andre R. Erler (aerler@aquanty.com)

Mean Precipitation Bias by Resolution

Relative Biases w.r.t. Merged Observations

- Rain shadow improves with resolution...
- ... but is still underestimated

Large Biases

A systematic positive biases exists on top of inadequate resolution

CESM generally has a negative bias in summer.

Winter Total Precipitation Rate Fractions [%]

Andre R. Erler (aerler@aquanty.com)

Outline

Introduction: Dynamical Downscaling Models and Experimental Setup

Very High Resolution Climate Simulations Observed and Modeled Precipitation

Extreme Value Analysis

Clustering of Station Observations Dependence on Model Resolution

End-of-Century Precipitation Projections The Role of Convective Precipitation

IPCC AR5 (2013) projections for global surface temperature under different scenarios.

Rare Events

Statistically detecting trends in extremes is difficult due to rarity of events (by definition).

Precipitation Extremes

A major concern with regard to Climate Change is the potential increase in extreme weather events.

▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Intro High Resolution Extremes Projections Conclusion

Station Clustering Model Resolu

Extreme Precipitation Climatology (Models Only)

Annual Maximum of Daily Precipitation

- Spatial pattern generally follows mean precipitation
- Variability is much higher than in mean

No Observations

There are no gridded observational estimates for precipitation extremes

イロト (母) (ヨト (ヨト)ヨヨ うのつ

Andre R. Erler (aerler@aquanty.com)

Intro High Resolution Extremes Projections Conclusion

Extreme Precipitation Climatology (Models Only)

Annual Maximum of **Daily Precipitation**

- Spatial pattern generally follows mean precipitation
- Variability is much higher than in mean

Andre R. Erler (aerler@aguanty.com)

Intro High Resolution Extremes Projections Conclusion

Station Clustering Model Resolutio

Extreme Precipitation Climatology (Models Only)

Annual Maximum of Daily Precipitation

- Spatial pattern generally follows mean precipitation
- Variability is much higher than in mean

No Observations

There are no gridded observational estimates for precipitation extremes

▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨヨ わへや

Rain Gauges in Western Canada

Used for Analysis of Precipitation Extremes

Environment Canada Weather Station, Mekis & Vincent (2011, *AO*)

Andre R. Erler (aerler@aquanty.com) Precipitation

Station Clustering

For Analysis of Precipitation Extremes

Station selection

- 12 stations in the Pacific Coast cluster
- 30 stations in the Prairies (AB) cluster

Stations were clustered based on similarity of precipitation climatology

Extreme Value Analysis published in Erler & Peltier (2016, J. Cli.)

Station Clustering

For Analysis of Precipitation Extremes

Station selection

- 12 stations in the Pacific Coast cluster
- 30 stations in the Prairies (AB) cluster

Stations were clustered based on similarity of precipitation climatology

Extreme Value Analysis published in Erler & Peltier (2016, J. Cli.)

Clusters were constructed on the basis of seasonal cycle

3 km WRF has best seasonal cycle, especially in Prairies

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= ◇Qペ

- Clusters were constructed on the basis of seasonal cycle
- 3 km WRF has best seasonal cycle, especially in Prairies

< ロ > < 同 > < 三 > < 三 > .

E SQC

Extremes generally follow the distribution of the mean

▶ For extremes, WRF has a low bias, even at 3 km

ELE SQC

・ 同 ト ・ ヨ ト ・ ヨ ト

- Extremes generally follow the distribution of the mean
- For extremes, WRF has a low bias, even at 3 km

• • = • • = •

EL OQO

Extreme Value Analysis: the GEV Distribution

Extreme Value Theorem

The GEV is the limitdistribution of the blockmaxima of any randomly distributed variable

 Distribution of <u>seasonal</u> precipitation maxima

Pooling

Samples are pooled over all stations within a cluster and over all years

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= ◇Qペ

Extreme Value Analysis: the GEV Distribution

Extreme Value Theorem

The GEV is the limitdistribution of the blockmaxima of any randomly distributed variable

 Distribution of <u>seasonal</u> precipitation maxima

Pooling

Samples are pooled over all stations within a cluster and over all years

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショク

Extreme Value Analysis: the K-S Test

The K-S Test is used ...

- ... as a measure for Goodness of Fit
- ... to test the significance of differences (to observations)

The K-S Test

The Kolmogorov-Smirnov (K-S) Test measures the statistical significance of differences between two distributions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショク

Precipitation Extremes: Linear Rescaling

EC Stations & WRF Simulations at the Pacific Coast in Winter

Winter Extremes for the Pacific Coast Cluster

- GEV fits histograms reasonably well
- WRF intensity is consistently 60 - 70% of Observations

Linear Rescaling

Simple linear rescaling of the mean results in good fit to Observations!

イロト (母) (ヨト (ヨト)ヨヨ うのつ

Precipitation Extremes: Linear Rescaling

EC Stations & WRF Simulations at the Pacific Coast in Winter

Winter Extremes for the Pacific Coast Cluster

- GEV fits histograms reasonably well
- WRF intensity is consistently 60 - 70% of Observations

Linear Rescaling

Simple linear rescaling of the mean results in good fit to Observations!

イロト (母) (ヨト (ヨト)ヨヨ うのつ

Precipitation Extremes: Linear Rescaling

EC Stations & WRF Simulations at the Pacific Coast in Winter

Winter Extremes for the Pacific Coast Cluster

- GEV fits histograms reasonably well
- WRF intensity is consistently 60 - 70% of Observations

Linear Rescaling

Simple linear rescaling of the mean results in good fit to Observations!

ヘロト (同) ヘヨト ヘヨト ショコ ろくつ

The Added Value of Higher Resolution

EC Stations & WRF Simulations at the Pacific Coast in Winter Winter Extremes for the Pacific Coast Cluster

- WRF at 3 km shows no significant differences to observations
- Differences for 30 & 10 km domains are marginally significant

Added Value of 3 km

The 3 km WRF domain consistently has the best distribution fit to observations

Andre R. Erler (aerler@aquanty.com) Precipitation Extremes in Convection-permitting Simulations

EC Stations & WRF Simulations in the Prairies in Winter

Winter Extremes for the Pacific Coast Cluster

- WRF at 3 km shows no significant differences to observations
- Differences for 30 & 10 km domains are marginally significant

Added Value of 3 km

The 3 km WRF domain consistently has the best distribution fit to observations

イロト (母) (ヨト (ヨト)ヨヨ うのつ

EC Stations & WRF Simulations in the Prairies in Winter

Winter Extremes for the Prairies Cluster

- WRF at 3 km shows no significant differences to observations
- Differences for 30 & 10 km domains are marginally significant

Added Value of $3 \, \text{km}$

The 3 km WRF domain consistently has the best distribution fit to observations

イロト (母) (ヨト (ヨト)ヨヨ うのつ

Summer Extremes for the Prairies Cluster

No Added Value?

Difference between parameterized and resolved convection is small at best!

- In summer, resolution does not seem to matter that much
- Even CESM fits the distribution of summer extremes after rescaling

イロト (母) (ヨト (ヨト) ヨヨ ののの

EC Stations & WRF Simulations in the Prairies in Summer

Summer Extremes for the Prairies Cluster

No Added Value?

Difference between parameterized and resolved convection is small at best!

- In summer, resolution does not seem to matter that much
- Even CESM fits the distribution of summer extremes after rescaling

イロト (母) (ヨト (ヨト)ヨヨ うのつ

EC Stations & WRF Simulations in the Prairies in Summer

Summer Extremes for the Prairies Cluster

No Added Value?

Difference between parameterized and resolved convection is small at best!

- In summer, resolution does not seem to matter that much
- Even CESM fits the distribution of summer extremes after rescaling

イロト (母) (ヨト (ヨト)ヨヨ うのつ

EC Stations & WRF Simulations in the Prairies in Summer

Outline

Introduction: Dynamical Downscaling Models and Experimental Setup

Very High Resolution Climate Simulations Observed and Modeled Precipitation

Extreme Value Analysis

Clustering of Station Observations Dependence on Model Resolution

End-of-Century Precipitation Projections The Role of Convective Precipitation

Regional Climate Projections

WRF Ensembles

- 3 km end-century projections in progress (15 / 7 years)
- Two WRF initial condition ensembles (60 years) with different cumulus schemes

Experimental Setup (30/10 km)

- GCM & RCM projections
 - Historical (1979 1994)
 - Mid-21st-Century (2045-2060)
 - End-21st-Century (2085-2100)
- only RCP 8.5 GHG scenarios

IPCC AR5 climate projections based on different scenarios; the RCP 8.5 is very similar to the older A2 scenario

Regional Climate Projections

WRF Ensembles

- 3 km end-century projections in progress (15 / 7 years)
- Two WRF initial condition ensembles (60 years) with different cumulus schemes

Experimental Setup (30/10 km)

- GCM & RCM projections
 - Historical (1979 1994)
 - Mid-21st-Century (2045-2060)
 - End-21st-Century (2085-2100)
- only RCP 8.5 GHG scenarios

IPCC AR5 climate projections based on different scenarios; the RCP 8.5 is very similar to the older A2 scenario

Total and Convective Precip Extremes (over the Prairies)

- Convective precip extremes increase, ...
- ... but total precip increase depends on convective fraction

Cumulus Scheme

Change in summer precip extremes is sensitive to cumulus scheme

Precipitation Extremes for Prairies

30 Stations (1635 yrs.)

WRF at 30 km with Grell-3 cumulus scheme

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショク

Total and Convective Precip Extremes (over the Prairies)

- Convective precip extremes increase, ...
- ... but total precip increase depends on convective fraction

Cumulus Scheme

Change in summer precip extremes is sensitive to cumulus scheme

Precipitation Extremes for Prairies

WRF at 30 km with Kain-Fritsch scheme

< ロ > < 同 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Total and Convective Precip Extremes (over the Prairies)

- Convective precip extremes increase, ...
- ... but total precip increase depends on convective fraction

Cumulus Scheme

Change in summer precip extremes is sensitive to cumulus scheme

Precipitation Extremes for Prairies

WRF at 30 km with Kain-Fritsch scheme

同 ト イヨト イヨト ヨヨ のくべ

Summer Extremes: Convection-Permitting Projections

Summer Extremes for Prairies (Projections)

- No statistically significant differences,
- ... but high uncertainty due to short period

Preliminary Results

. . .

Convection permitting simulations show no increase in summer extremes

Prairies Cluster in Summer (#21, 294 yrs.)

EL OQO

Andre R. Erler (aerler@aquanty.com) Precipitation Extremes in Convection-permitting Simulations

Summer Extremes: Convection-Permitting Projections

Summer Extremes for Prairies (Projections)

- No statistically significant differences,
- ... but high uncertainty due to short period

Preliminary Results

. . .

Convection permitting simulations show no increase in summer extremes

Prairies Cluster in Summer (#21, 294 yrs.)

= 200

Andre R. Erler (aerler@aquanty.com) Precipitation Extremes in Convection-permitting Simulations

3 km WRF simulations for historical and end-century periods (15 & 7 years)

Annual Extremes for Prairies (Projections)

- Clear and highly significant increase
- Sample size is sufficient for a strong signal
- The increase primarily driven by and increase in spring

Poor GEV Fit

GEV for annual extremes does not fit as well, and differs from observations

Andre R. Erler (aerler@aquanty.com)

3 km WRF simulations for historical and end-century periods (15 & 7 years)

Annual Extremes for Prairies (Projections)

- Clear and highly significant increase
- Sample size is sufficient for a strong signal
- The increase primarily driven by and increase in spring

Poor GEV Fit

GEV for annual extremes does not fit as well, and differs from observations

Andre R. Erler (aerler@aquanty.com)

3 km WRF simulations for historical and end-century periods (15 & 7 years)

Annual Extremes for Prairies (Projections)

- Clear and highly significant increase
- Sample size is sufficient for a strong signal
- The increase primarily driven by and increase in spring

Poor GEV Fit

GEV for annual extremes does not fit as well, and differs from observations

Andre R. Erler (aerler@aquanty.com)

3 km WRF simulations for historical and end-century periods (15 & 7 years)

Annual Extremes for Prairies (Projections)

- Clear and highly significant increase
- Sample size is sufficient for a strong signal
- The increase primarily driven by and increase in spring

Poor GEV Fit

GEV for annual extremes does not fit as well, and differs from observations

Andre R. Erler (aerler@aquanty.com)

Summary of Results

- WRF has a large precipitation bias, regardless of resolution
- But extremes are consistently underestimated

The Added Value of High Resolution

- In winter higher resolution affords a much better distribution fit
- In summer even parameterized convection fits the observations...
- ... but resolving convection reduces model uncertainty for summer precip projections

Uncertainty in convective precip

 Robust increase in winter precipitation (extremes), but shift in warm season

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= ◇Qペ

Summary of Results

- WRF has a large precipitation bias, regardless of resolution
- But extremes are consistently underestimated

The Added Value of High Resolution

- In winter higher resolution affords a much better distribution fit
- In summer even parameterized convection fits the observations...
- ... but resolving convection reduces model uncertainty for summer precip projections

Uncertainty in convective precip

 Robust increase in winter precipitation (extremes), but shift in warm season

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= ◇Qペ

Thank You! \sim Questions?

Acknowledgements:

- Dr. Marc d'Orgeville
- Dr. Jonathan Gula

4 E 6 4 E 6

EL OQA

List of Relevant Publications

- Erler, Andre R. and W. Richard Peltier, 2016, "Projected Changes in Precipitation Extremes for Western Canada based on High-resolution Regional Climate Simulations", *Journal of Climate*.
- Erler, Andre R. and W. Richard Peltier, 2017, "Projected Hydro-climatic Changes in Two Major River Basins at the Canadian West Coast Based on High-resolution Regional Climate Simulations", *Journal of Climate*.
- Erler, Andre R., W. Richard Peltier and Marc d'Orgeville, 2015, "Dynamically Downscaled High Resolution Hydro-Climate Projections for Western Canada", *Journal of Climate*.
- Peltier, W. Richard, Marc d'Orgeville, Andre R. Erler and Fengyi Xie, 2018, "Uncertainty in Future Summer Precipitation in the Laurentian Great Lakes Basin: Dynamical Downscaling and the Influence of Continental Scale Processes on Regional Climate Change", *Journal of Climate*.
- Marc d'Orgeville, W. Richard Peltier and Andre R. Erler, Jonathan Gula, 2014, "Climate change impacts on Great Lakes Basin precipitation extremes", *Journal of Geophysical Research*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ���

WRF: Climate Projection at 10 km Resolution

High Resolution

Complex coast line & mountains of western Canada are poorly resolved in CESM

- Non-hydrostatic, finitedifference dynamical core
- Noah LSM, RRTMG radiation, Morrison-2-Moment MP, Grell-3 cumulus
- Also coupled a simple lake model (FLake)

Topography of Western Canada. Left: CESM at \sim 80 km Right: WRF (inner domain) at 10 km

向 ト イヨト イヨト ヨヨ うくや

WRF: Climate Projection at 10 km Resolution

High Resolution

Complex coast line & mountains of western Canada are poorly resolved in CESM

- Non-hydrostatic, finitedifference dynamical core
- Noah LSM, RRTMG radiation, Morrison-2-Moment MP, Grell-3 cumulus
- Also coupled a simple lake model (FLake)

Topography of Western Canada. Left: CESM at \sim 80 km Right: WRF (inner domain) at 10 km

JI OQO

Validation: Temperature

Ensemble Average (differences w.r.t. merged observations)

- CESM has warm bias in summer and weaker seasonal cycle
- Mountains appear to be too cold and plains too warm

WRF also has a significant cold bias in spring due to poor modeling of snow

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショク

Andre R. Erler (aerler@aquanty.com)

Validation: Precipitation

Ensemble Average (fractions w.r.t. merged observations)

- First rain barrier significantly underestimated (resolution dependent)
- Precipitation in rain shadow overestimated
- Seasonal cycle in lee of Rockies underestimated (less so in WRF)

Andre R. Erler (aerler@aquanty.com)

Total and Convective Precip over the Prairies

- Convective precip increases robustly, ...
- ... but total precip increase depends on convective fraction

Cumulus Scheme

Summer precipitation increase is sensitive to cumulus scheme

Precipitation Variables for Prairies 30 Stations (1637 yrs.)

WRF at 30 km with Grell-3 cumulus scheme

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショク

Total and Convective Precip over the Prairies

- Convective precip increases robustly, ...
- ... but total precip increase depends on convective fraction

Cumulus Scheme

Summer precipitation increase is sensitive to cumulus scheme

WRF at 30 km with KF cumulus scheme

< ロ > < 同 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Total and Convective Precip over the Prairies

- Convective precip increases robustly, ...
- ... but total precip increase depends on convective fraction

Cumulus Scheme

Summer precipitation increase is sensitive to cumulus scheme

WRF at 30 km with KF cumulus scheme

□ ► < E ► < E ► E = のQC</p>

Precipitation Changes at High Resolution (3 km, 2100)

WRF at 3 km (Monthly Normals)

Total and Extreme Precipitation (Prairies)

- Increase in winter and spring, ...
- ... but not in summer
- Same response in precip extremes

Natural Variability

Note that this is only based on 15 & 7 years of simulation, and decadal variability is significant in western Canada!

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = ♪ ♀ (♪

Precipitation Changes at High Resolution (3 km, 2100)

WRF at 3 km (Monthly Extremes)

Total and Extreme Precipitation (Prairies)

- Increase in winter and spring, ...
- ... but not in summer
- Same response in precip extremes

Natural Variability

Note that this is only based on 15 & 7 years of simulation, and decadal variability is significant in western Canada!

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = ♪ ♀ (♪

Precipitation Changes at High Resolution (3 km, 2100)

WRF at 3 km (Monthly Extremes)

Total and Extreme Precipitation (Prairies)

- Increase in winter and spring, ...
- ... but not in summer
- Same response in precip extremes

Natural Variability

Note that this is only based on 15 & 7 years of simulation, and decadal variability is significant in western Canada!

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = ♪ ♀ (♪

Extreme Quantiles and Return Periods

Intensity of Decadal Return Period Events

 Extreme tails overestimated in WRF

Return periods:

Fall: $100 \text{ yr} \Rightarrow 25 \text{ yr}$ Winter: $100 \text{ yr} \Rightarrow 33 \text{ yr}$ Summer: $100 \text{ yr} \Rightarrow 80 \text{ yr}$

Fattening Tails?

Cold season increase due to shift in mean

▲口 > ▲母 > ▲目 > ▲目 > ▲目 やくの

Tail CDF: Observations & Projections (rescaled)

Andre R. Erler (aerler@aquanty.com) Precipitation Extremes in Convection-permitting Simulations

Extreme Quantiles and Return Periods

Lines: 50 and 100 year return period events

Intensity of Decadal Return Period Events

 Extreme tails overestimated in WRF

Return periods:

Fall: $100 \text{ yr} \Rightarrow 25 \text{ yr}$ Winter: $100 \text{ yr} \Rightarrow 33 \text{ yr}$ Summer: $100 \text{ yr} \Rightarrow 80 \text{ yr}$

Fattening Tails?

Cold season increase due to shift in mean

イロト (母) (ヨト (ヨト)ヨヨ うのつ

Extreme Quantiles and Return Periods

Rescaling of means: relevance of shape change

Intensity of Decadal Return Period Events

 Extreme tails overestimated in WRF

Return periods:

Fall: 100 yr $\Rightarrow 25$ yrWinter: 100 yr $\Rightarrow 33$ yrSummer: 100 yr $\Rightarrow 80$ yr

Fattening Tails?
Cold season increase
due to shift in mean

- 4 母 ト 4 ヨ ト ヨ ヨ め ()

Andre R. Erler (aerler@aquanty.com) Precipitation Extremes in Convection-permitting Simulations

Winter Precipitation Extremes in British Columbia

Distribution of seasonal (winter) block maxima.

Very Bad Fit

Pooled winter extremes do not follow a GEV distribution! (K-S test)

All data were aggregated (pooled) over all 49 stations in BC and a single GEV distribution was fitted.

ヘロト (同) ヘヨト ヘヨト ショコ ろくつ

Extreme Value Analysis: the GEV Distribution

Extreme Value Theorem

The GEV is the limitdistribution of the blockmaxima of any randomly distributed variable

- Block length: one season (3 month)
- 3 Parameters: location, scale, shape
- Shape (> 0) controls thickness of tails

Generalized extreme value densities

イロト (母) (ヨト (ヨト)ヨヨ うのつ

"GevDensity" by Created by R D Gill, 4 January 2013, using R script. Licensed under CC BY-SA 3.0 via Wikipedia