

Proudly Operated by Battelle Since 1965

Modeling Mesoscale Convective Systems and their Large-Scale Environments

L. Ruby Leung, Zhe Feng, Bob Houze, and Koichi Sakaguchi Atmospheric Sciences and Global Change Division Pacific Northwest National Laboratory, Richland, WA

GEWEX Convection-Permitting Climate Modeling Workshop II 4-6 September, 2018; NCAR, Boulder, CO

September 12, 2018

Pacific Northwest

Proudly Operated by Battelle Since 1965

Characteristics of mesoscale convective systems

- A mesoscale convective system (MCS) is a contiguous cumulonimbus cloud complex with horizontal dimensions of 100s to 1000s km and lasts up to ~10-24 h
- MCSs have distinct characteristics compared to non-MCS precipitation events
- > Past (Feng et al. 2016) and projected future (Prein et al. 2017) changes motivated more efforts to model MCSs

Challenges for climate modeling

Climate models with parameterized convection exhibit significant biases in simulating precipitation (mean, diurnal cycle, intensity) and surface temperature

Daily precipitation distribution

Pacific Northw

Proudly Operated by Battelle Since 1965

Pacific Northw

Proudly Operated by Battelle Since 1965

Modeling MCSs in climate models

Three modeling approaches with computational requirements within reach for climate simulations:

Model for Prediction Across Scales (MPAS)

MCS characteristics reasonably simulated

b) NEXRAD Radar Coverad

105°W

100°W

95°W

90°V

- WRF convection permitting simulations at 4 km grid spacing for two warm seasons without convection parameterization
- Simulations reproduced observed MCS statistics

(트) 40° 1500 분

1000

500

(a) Model Domain

45°N

40°**∧**

35°N

30°N

25°N

120°W

115°W

110°W

105°W

100°W

95°W

90°W

85°W

75°W

80°W

Max PF Equivalent Diameter (km)

Positive feedback from long-lived MCSs to the environment supports their longevity

Proudly Operated by Battelle Since 1965

Long-lived MCSs produce a midlevel circulation anomaly that maintains the MCSs and strengthens the environmental trough

Sensitivity to microphysics parameterizations

Model simulates convective and stratiform aspects of MCS with varying level of details

Pacific Northwest

NATIONAL LABORATORY
Proudly Operated by Battelle Since 1965

Microphysical influence on MCS evolution

Comparing WRF convection permitting simulations with Morrison vs. Thompson microphysics schemes
Morrison
Thompson produced more

Thompson produced more longer-lived MCSs that produced more precipitation

8

Global variable resolution modeling

- Given the important interactions between MCSs and the circulation, a global modeling approach may offer some advantages in modeling MCSs
- Model for Prediction Across Scales (MPAS) coupled with CAM physics
 - Finite volume scheme on the spherical centroidal Voronoi tessellation (SCVT) grid
 - C-grid staggering for better representation of mesoscale, divergent flow (Skamarock 2011)

MCSs in April

- Model evaluation using initialized forecasts: 4 km (no CP), 12 and 25 km (with CP)
- Large precipitation events and some embedded MCSs are well captured even at 12 km and 25 km resolution

Total precipitation

MCS precipitation

MCSs in August

MCSs are much weaker in August; simulations at 4 km are significantly better in capturing the propagating events than simulations at 12 km and 25 km resolution

An MCS event in April

Proudly Operated by Battelle Since 1965

Strong synoptic scale forcing associated with baroclinic waves, strong LLJ and moisture supply from the Gulf

OBS 4 km MPAS 4 km → 20 m/s (900 hPa) → 20 m/s (900 hPa) 3400 - 20.0 OBS 4 km 5450 -- 10.0 - 5.0 - 3.0 Rain (mm/h) - 2.0 - 1.5 1.0 5800 - 0.5 - 0.2 L 0.1 MPAS 12 km → 20 m/s (900 hPa) MPAS 25 km → 20 m/s (900 hPa) - 20.0 12 km 25 km - 10.0 - 5.0 - 3.0 Rain (mm/h) - 2.0 1.5 - 1.0 - 0.5 - 0.2 12 - 0.1

2011-04-15T00:00 UTC

Contour: 500 hPa geopotential Vector: 900 hPa wind Red shading: MCS cloud shield Color shading: precipitation

An MCS event in August

OBS 4 km

OBS

12 km

- High pressure over the **Great Plains**
- Weaker nocturnal LLJ
- Convection initiates ahead of shortwave trough, feeding from LLJ and propagate along the ridge

Contour: 500 hPa geopotential Vector: 900 hPa wind Red shading: MCS cloud shield Color shading: precipitation

2011-08-01T00:00 UTC

Pacific Northwest

Predictability of large-scale environment

Lower predictability of the large-scale environment in August than April for the first 5 days

3.5 c^{×10-3} APR AUG 3 25-100 km 12-46 km August 2.5 4-32 km RMSE (kg/kg) 2 1.5 April **Statistics domain** 40N (both ocean and land) 1 30N 0.5 120W 100W 80W 0 20 40 60 80 100 120 140 160 0 lead time (hours) 14 **Analysis Period**

RMSE of 850 hPa humidity comparing MPAS with ERAI

Pacific Northwest

Proudly Operated by Battelle Since 1965

Exploring MPAS simulations at gray zone resolution

Proudly Operated by Battelle Since 1965

Compare simulations with Zhang-McFarlane (ZM), Grell-Freitas (GF), and no (no CP) convection parameterizations 40N

Mean precipitation (April – August 2011)

Promising skill at the gray zone with a scale-aware parameterization

Pacific Northwest

NATIONAL LABORATORY
Proudly Operated by **Battelle** Since 1965

- Regional convection permitting simulations can capture many aspects of MCSs
- Positive feedback from long-lived MCSs to the circulation through diabatic heating is important for MCS longevity
- Global variable resolution modeling offers a viable approach for convection permitting modeling of MCSs in the global context
 - Simulations at 4 km with no CP are more skillful than simulations at 12 km and 25 km with the ZM scheme
 - At gray zone resolution (12 km), the GF scheme shows some promises as a scaleaware parameterization
- Models are more skillful in simulating MCSs during spring, but they are much less skillful in summer with weak synoptic forcing