Successes and challenges in the simulation of tropical deep convection at high resolution

Jean-Pierre CHABOUREAU, Thibaut DAUHUT, Keun-Ok LEE and Irene REINARES MARTINEZ

Laboratoire d'Aérologie, University of Toulouse, CNRS, UPS, France

2nd GEWEX Convection-Permitting Climate Modeling Workshop, Boulder, CO, 4-6 Sep. 2018

Representation of deep convection

microphysics and radiation

Very deep convection in a Giga-LES

Hector the Convector

- 2560 x 2048 x 256, 1.34 billion gridpoints
 Δx=100 m and Δz=40 100 m
- 10-h simulation on IBM BlueGene-Q
 8 million CPU h, 16 kcores, 20 Tb data

eso-NH

How does the very deep convection hydrate the stratosphere?

Video on https://youtu.be/xjPumywGaAU

Dauhut et al., Atmos. Sci. Lett. 2015

Comparison with SCOUT-O3 observations

The Giga-LES reproduces correctly the details of Hector as its overshoots into the stratosphere

Dauhut et al., Atmos. Sci. Lett. 2015

Sensitivity to horizontal resolution

Spectrum of vertical velocity

Overturning in Hector

Very deep convection 13:31 – 13:45

Two key circulations

Overshoot overturning

Tropospheric overturning

The very deep convective phase is

Dauhut et al., J. Atmos. Sci., 2017

Identification of the tallest updrafts

Dauhut et al., J. Atmos. Sci., 2016

The tallest updrafts, why bother?

In TTL, the two tallest updrafts contribute to >90% of the transport by all the updrafts.

The isentropic analysis corroborates the Eulerian computation with w>10 m/s, except in lower tropo and around the tropopause (#) where weak motions matter for the irreversible flux.

Formation of the tallest updrafts

12:15 Deep Convection

Convergence intensified by cold pools

Dauhut et al., J. Atmos. Sci., 2016

Properties of the tallest updrafts

Dauhut et al., J. Atmos. Sci., 2016

How do overshoots hydrate the stratosphere?

700 overshoots identified, 46 overshoots last more than 10 min They are diverse in shapes and impacts above the tropopause

Hydrating and non-hydrating overshoots

The hydrating overshoots reach higher altitudes...

...and exhibit large absolute values of buoyancy.

The mechanisms inside the hydrating overshoot A

The **top-entrainment** of stratospheric air is crucial to warm the overshoot and to produce the hydration by ice sublimation.

Dauhut et al., J. Atmos. Sci., submitted

Representation of deep convection

Convective hydration during StratoClim

What is the fate of the water injected by overshoots?

Simulation starting at 00 UTC 6 August 2017 from ECMWF analysis and run for 3 days, Δx=2.5 km, 2000 x 1440 x 144, 400 million gdpts

Lee et al., Atmos. Chem. Phys., in preparation

0.005

0.004

0.0035

0.0009

Injection of water by overshoots

Ice content

Water vapor

Tropospheric tracer

Advection of the hydration patch

Lee et al., Atmos. Chem. Phys., in preparation

Convective vs. turbulent mixing

Lee et al., Atmos. Chem. Phys., in preparation

MCSs over north Africa

What controls the distribution and variability of precipitation?
 What is the radiative impact of dust on the atmosphere?

- **Three** simulations starting at 00 UTC 9 June 2006 from ECMWF analysis and run for 6 days
- HiRes/DUST Δx=2.5 km, 3072 x 1536 x 72, 1/3 billion gdpts, with dust radiative effects
- LowRes Δx=20 km with KFB convective parameterization and dust scheme
- NODUST∆x=2.5 km, w/o dust radiative effect

Reinares Martínez and Chaboureau, Mon. Wea. Rev., 2018a,b

11 June 2006 around 1200 UTC

Distribution of precipitation

 Long-lived MCSs produce 55% of precipitation, thus a large part of the diurnal cycle. This is well captured by the CRM simulations

Characteristics of long-lived MCSs

OBS: most organized long-lived MCSs in SWA

HiRes/DUST agreement with OBS except in SWA (too small, short-lived and slow, small northward meridional component)

LowRes drawbacks more pronounced

DUST long-lived MCSs less numerous than **NODUST** in SWA

The CRM simulations lack the degree of organization of the long-lived MCSs over SWA. The CRM with dust does a better job due to the stabilization of the lower atmosphere (large CAPE), which inhibits the triggering of convection (large CIN).

Reinares Martínez and Chaboureau, Mon. Wea. Rev., 2018a,b

Conclusions

- CRM approach was successful in representing cloud and precipitation distribution – MCSs, diurnal cycle, etc.
- A higher skill was obtained with dust radiative effects over north Africa, but cloud organization is lacking: errors in initial conditions, drawback in parameterization of microphysics, of turbulence?
- Convergence in dynamics, hydration is almost reached with LES

Future plans

- Case studies of deep convection using an aerosol-aware microphysical scheme – avoiding the saturation adjustment and looking for aerosol-cloud interactions: Application to the AEROCLO-sA/ORACLES/CLARIFY field campaign (Aug. 2017)
- Investigation of convective overshoots over longer periods