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Hybrid downscaling – a brief overview
• The essence of hybrid downscaling is to do limited dynamical

downscaling for a region, and then develop simple statistical models to 
mimic dynamical model behavior, i.e. do hybrid dynamical-statistical 
downscaling.

• The statistical models can then be used to produce regional data 
corresponding to any GCM, for any time slice or forcing scenario.  

• Hybrid downscaling forces the researcher to diagnose climate change 
patterns produced by dynamical downscaling.

• It avoids the stationary assumption common to conventional statistical 
downscaling techniques.

• It allows for uncertainty characterization associated with GCM spread 
and forcing scenario.



”Baseline” simulation of 1981–2015 climate.
Weather Research and Forecasting (WRF) model forced by 
data from North American Regional Reanalysis (NARR).

5 future WRF simulations of Oct 2091–Sept 2101 
climate, representing climate change signal from CNRM-
CM5, GFDL-CM3, inmcm4, IPSL-CM5A-LR, MPI-ESM-LR 
GCMs under RCP8.5.

Hybrid downscaling projections of mean changes in 
temperature, snow cover, SWE, runoff, and 0-10 cm soil 
moisture at 2040–2060 and 2081–2100 under RCP8.5 and 
RCP4.5, representing full CMIP5 GCM ensemble.
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Dynamically downscaled warming

These are example warming patterns for 5 selected months, which span 
the most important phase of the annual cycle for Sierra water resources.
This is the average over all five dynamically downscaled futures. 
(Warming patterns are very similar for individual simulations, even if the 
magnitudes vary.)

Two features are evident:

1. Warming is greater on the continental side of the Sierra Nevada.

2. The imprint of snow albedo feedback is clear in every month.

Walton et al. 2017



Dynamically downscaled warming

The impact of snow albedo feedback is especially evident if one compares the 
warming patterns to the change in fractional area covered by snow.

Walton et al. 2017



• Based on these results, we 
construct a simple mathematical 
model that takes as inputs the 
main drivers of regional warming.

• Through careful diagnostics, we 
have determined that those 
drivers are: 

1. Overall GCM warming in this 
region

2. GCM warming contrast 
between N America and the 
adjacent Pacific Ocean

3. Snow albedo feedback
• With these inputs, the statistical 

model then produces warming 
patterns that mimic those of WRF. 

Development of Statistical Model

Walton et al. 2017



Dynmcl
Hybrid

• This is the RCP8.5 end-century 
warming as a function of elevation, 
for March and June.

• Both the dynamical results from the 
5-member ensemble and 
corresponding results from the 
statistical model are shown.

• The agreement is nearly perfect, 
indicating we can model WRF’s 
warming patterns if we know:

1) how much warming a GCM 
gives

2) how much land-sea contrast 
that GCM has

3) how much snow albedo 
feedback WRF produces

Test of Statistical Model

Walton et al. 2017



Dynmcl
Hybrid

Other downscaling techniques

• How do these projections stack up 
against other downscaled data 
products?

• Here again is the warming produced 
by the hybrid approach as a 
function of elevation, for March and 
June.

• Let’s now overlay the warming 
produced by two commonly used 
downscaling techniques.

Walton et al. 2017



Dynmcl
Hybrid
BCSD

• Here’s the warming given by BCSD, 
which may be one of the most 
commonly applied downscaling 
techniques.

Other downscaling techniques

Walton et al. 2017



Dynmcl
Hybrid
BCSD
BCCA

• And here’s the warming given by 
BCCA, another common technique.

• Neither BCSD nor BCCA captures 
the large variations in warming with 
elevation.

• In fact, both BCSD and BCCA 
produce “flat” warming projections 
in the Sierra Nevada, with little 
spatial structure.

Other downscaling techniques

Walton et al. 2017



How Snow Albedo Feedback Affects Runoff Timing

Schwartz et al. 2017
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Why do downscaling techniques differ?

• Here is the warming from a single GCM (CNRM-CM5) over the region of 
interest, and the warming from that GCM interpolated to the native 
grid of the North American Regional Reanalysis.

• The maximum warming is located in a zone where snow retreats in the 
GCM.

• Since topography is in the wrong place, the snow margin is in the 
wrong place, and so the warming has features we know are unphysical.

Walton et al. (in prep)



Why do downscaling techniques differ?

• Below is the high-resolution warming predicted by LOCA, an emerging 
statistical downscaling technique.

• In this case LOCA is trained on NARR data (coarse resolution dataset) 
and Livneh (fine resolution observationally-based gridded product).

• Its warming pattern matches that of the interpolated GCM.

Walton et al. (in prep)



Why do downscaling techniques differ?

• Here is the warming pattern produced by WRF 
when driven by CNRM-CM5 data using the 
pseudo-global-warming method.

• Snow albedo feedback is visible in the mid-
elevations of the Sierra Nevada, and WRF has 
suppressed the unrealistic warming associated 
with erroneous topography in the GCM.

Walton et al. (in prep)



Why do downscaling techniques differ?

• So why do the downscaling methods differ? Is it 
because the statistical method is trained on a 
different historical data set, or is there something 
inherent in the statistical method that causes it to 
reproduce the GCM-interpolated pattern?

Walton et al. (in prep)



Why do downscaling techniques differ?

• We address this question by training LOCA on 
WRF historical data instead of Livneh.

Walton et al. (in prep)



Why do downscaling techniques differ?

• We address this question by training LOCA on 
WRF historical data instead of Livneh.

• Here is the warming pattern that results.

• The warming pattern is a feature of the future 
climate that has no analog in the historical period, 
no matter which historical dataset is used.

Walton et al. (in prep)



Why do downscaling techniques differ?
• The statistical methods search for a warm day or warm 

days in the historical record and then create composite 
future warm days.

• But the future warming  is sustained over many years.

• The resulting snowpack loss is very different from the 
snowpack anomaly associated with an unusually warm 
day. 

• Compositing analogs from the historical record also 
appears to reproduce unphysical features of the GCM 
pattern.

Walton et al. (in prep)



Conclusions

• To have confidence in high-resolution climate projections used for decision 
making, it is critical to evaluate the physical mechanisms that underpin 
regional change patterns.

• If one formalizes this evaluation process through hybrid downscaling, one 
also has the benefit of a statistical model that can downscale an arbitrarily 
large GCM ensemble, providing ensemble-mean and uncertainty estimates 
associated with GCM spread.

• In the case of California’s Sierra Nevada, snow albedo feedback adds critical 
spatial structure to the warming patterns, with important follow-on effects, 
e.g. runoff timing.

• Purely statistical methods have trouble capturing the warming pattern 
associated with snow albedo feedback, because the process has no analog at 
the daily time scale in the historical record.



Shifting gears entirely…
…to extreme precipitation



Compensation across the precipitation distribution in time
• For every CMIP5 GCM, we can calculate 

the change in daily extreme precipitation 
(>99th percentile) and average that 
change over the globe. 

• Likewise for every model we can 
calculate the daily precipitation change 
during the non-extreme events (rest of 
the distribution).

• Shown here is the result when we scatter 
those two quantities against one 
another.

• If a particular model shows a large 
precipitation increase during very wet 
events, it will have a smaller increase or 
even a decrease during light-moderate 
events, and vice versa. 

• So the models seem to be saying that 
changes in one part of the distribution 
have to be compensated for by changes 
in the rest of the distribution.Thackeray et al. 2018, submitted



r (P≥99+,P<99) = -0.82
r (P≥95+,20≤P<95-) = -0.83
r (P≥90+,20≤P<90-) = -0.86
r (P≥95,P<95) = -0.88
r (P≥90,P<90) = -0.86
r (wetting,drying) = -0.85

• This result is highly robust to how we 
define the extremely wet and not-so-
extremely-wet parts of the 
distribution.

• This compensation effect is clearly a 
big driver behind the very large 
spread in changes in extreme 
precipitation.

Compensation across the precipitation distribution in time

Thackeray et al. 2018, submitted



Connection to global hydrologic cycle intensification
• The atmosphere’s energy budget is 

changing in such a way as to favor 
more precipitation (global hydrologic 
cycle intensification). 

• The sum of the change in extreme and 
non-extreme precipitation has to 
equal the global precipitation increase.

• So the more global hydrologic cycle 
intensification seen in a particular 
model, the more it should be shifted 
toward the upper right of this plot.

Thackeray et al. 2018, submitted



• Likewise, the less global hydrologic 
cycle intensification seen in a 
particular model, the more it should 
be shifted toward the lower left.

• Let’s see what happens when we 
color-code these numbers by the 
global precipitation increase.

Connection to global hydrologic cycle intensification

Thackeray et al. 2018, submitted



global-mean total 
precipitation 
change (GT, 
mm/day/K)

• Here’s our colorbar corresponding to 
the global-mean precipitation 
increase. (Red colors indicate more 
increase, blue, indicate less.)

Connection to global hydrologic cycle intensification



global-mean total 
precipitation 
change (GT, 
mm/day/K)

• And here’s the plot from before, now 
color-coded by how much global 
hydrologic cycle intensification seen in 
each model. 

• The models are organized in exactly 
the manner we predicted!

Connection to global hydrologic cycle intensification

Thackeray et al. 2018, submitted



• The spread in global hydrologic cycle 
intensification leads to spread in local 
precipitation extremes.

• But the main “axis” of spread in this 
plot is associated with the trade-off 
between changes in extreme and non-
extreme precipitation, and large 
intermodel differences in extreme 
precipitation are seen even when 
those models have the same global 
precipitation increase.

• So what determines whether a model 
produces a big increase in extremely 
wet precipitation at the expense of the 
non-extreme precipitation, and vice 
versa?

Connection to global hydrologic cycle intensification

Thackeray et al. 2018, submitted



Influence of model resolution

resolution length scale (deg, if all grid cells are squares)

r (res, ≥P99) = -0.50

• One important connection to the trade-off 
is with resolution.

• It’s not a perfect relationship, but GCMs 
with higher resolution tend to produce 
larger increases in extreme precipitation, 
and modest decreases in non-extreme 
precipitation.

• The highest resolution GCM is so far from 
being convection-permitting that it’d be 
silly to extrapolate from this relationship to 
the convective scale. 

• Still, the plot is powerful motivation for this 
group. Even the GCMs admit that the 
character of extremes really does change at 
higher resolution!



END



Connection to global hydrologic cycle intensification

• We’ve seen that the spread in global 
hydrologic cycle intensification leads 
to  the spread in precipitation 
extremes. 

• But the main “axis” of spread in this 
plot is associated with the trade-off 
between changes in extreme and non-
extreme precipitation.

• So what determines whether a model 
produces a big increase in extremely 
wet precipitation at the expense of the 
non-extreme precipitation, and vice 
versa?

Thackeray et al. 2018, in prep.
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Walton et al. 2017

Differences in ensemble-mean warming patterns

Here’s the difference, for every month of the year, 
between the ensemble-mean warming produced by hybrid 
downscaling and that produced by the CMIP5 GCMs. 



Walton et al. 2017

Differences in ensemble-mean warming patterns



• The simple model can now be used to 
produce warming patterns that we would 
have produced had we downscaled all 
available GCMs dynamically.

• This is the RCP 8.5 end-century warming as 
a function of elevation, from October 
through July.

• The solid red line is the ensemble-mean, 
and the red shading is an indication of 
uncertainty associated with GCM spread.

• Note the “warming bulge” associated with 
snow albedo feedback. It moves to higher 
elevations with the seasonal retreat of the 
snowline.

Walton et al. 2017

Warming Outcomes



Regional footprints
• Where does the global increase in 

precipitation have the strongest link 
with the local increase in extreme 
precipitation?

• Here’s the inter-model correlation 
between the local increase in 
precipitation and the globally-averaged 
precipitation increases, as a function of 
latitude and position within the 
distribution.

• Clearly the increase in tropical extremes 
is strongly influenced by the global 
hydrologic cycle change.

• There are also subtropical signals in both 
hemispheres (atmospheric rivers).

• Another way to think of these results is 
that the increases in tropical extremes 
and large atmospheric river events 
account for much of the required latent 
heat increase when the global 
hydrologic cycle intensifies.

Thackeray et al. 2018, in prep.
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Earlier Shift in Runoff Timing
RCP 8.5, end-century, CMIP5 ensemble mean

Schwartz et al. 2017



Loss of Summertime Soil Moisture

Change in 0–10 cm
Soil Moisture

2081–2100,
BUSINESS AS USUAL

Schwartz et al. 2017b (in prep.)



Earlier Shift in Runoff Timing

Change in Runoff
Midpoint

2081–2100, BUSINESS AS USUAL

Schwartz et al. 2017a (in rev.)



Snowpack Severely Impacted During Drought

Berg and Hall 2017
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