

Roadmap of Deterministic to Probabilistic

Dorothy Koch, Hendrik Tolman, Yan Xue

NOAA/NWS Office of Science and Technology Integration Silver Spring, MD

Acknowledgement: Yuejian Zhu, Tom Hamill

8th NCEP Ensemble User Workshop

- Ensembles are designed to simulate the sources of forecast errors linked to initial condition and model uncertainties
- Initial condition uncertainties: Singular Vectors, Breeding Vectors, ensemble data assimilation
- Model uncertainties: stochastic schemes, perturbed parameters, multi-model ensemble
- Reforecasts are used to estimate the ensemble characteristics (reliability and accuracy, and model biases)

Unified Forecast System

UDA: Unified Data assimilation SFS: Seasonal Forecast System SSFS: Subseasonal Forecast System GFS: Weather Forecast System RRFS: Rapid Refresh Forecast System WoFS; Warn on Forecast System

Scope of Unified Forecast System

FOCUS	local	regional		global	
PREDICTIVE TIME SCALE	hour	day	week	month	year
UFS APPLICATIONS weather and seasonal	Warn on Forecast System	Rapid Refresh Forecast Systems	Global Forecast System	Sub-Seasonal Forecast System	Seasonal Forecast System
hurricane 🕳		Hurricane A Forecast	nalysis and System		
space weather		Whole Atmosphere Model			
marine and coastal		Coastal Mode	ling Systems		
air quality e		Air Quality	/ Systems		
flood and hydrological		National Wa			

Roadmap: 5 Year "End State"

Element	Cadence	Range	Resol.	Ens.	Update	RR
SFS	7 d	9-15 mo	50 km (g)	28	4 y	1979-present
SSFS	24 h	35-45 d	35 km (g)	31	2 y	20-25 y
GFS	6 h	7-10 d	13 km (g)	26	1 y	3 y
RRFS	1 h	18 h	3 km (r)	26	1 y	TBD
	6-12 h	30 h				
	6-12 h	60 h				
WoFS	5-15 min	2-4h	1 km (r)	26	1 y	TBD

(g) Global (r) Regional Resolutions are for atmosphere Other component models may have different resolutions

SFS= Seasonal Forecast System **SSFS= Sub-Seasonal Forecast System** GFS= Global Forecast System RRFS= Rapid Refresh Forecast System WoFS = "Warn on Forecast" System

Changing use of WCOSS Needing ~ 37 PFlop machine

Strategic Implementation Plan (SIP) FY20-22

- 13 UFS Working Groups (WGs)
- 2 Application Teams (ATs):
 - Mid-range weather to extended range (S2S) using coupled system
 - Convective Allowing Model
- ATs design focused tasks to address the requirements and forecast goals and model deficiencies
- WG on Ensemble Development: Co-Chairs Tom Hamill; Yuejian Zhu; Ryan Torn

Spread vs. RMSE (Inconsistency)

Ensemble Working Group Co-Chairs: Tom Hamill; Yuejian Zhu; Ryan Torn

- The gap between spread and RMSE is a major issue in Global Ensemble Forecast System (GEFSv11).
- Is it due to overestimation of RMSE due to uncertainties in T_{2m} analysis?
- Is it due to too little spread in initialization ensemble?
- Is it due to the treatment of model uncertainty?

Multi Model Ensemble vs. Unified Model Approach

- Multi Model Ensembles (MMEs) have been used successfully in meteorology at many scales. Generally an MME is shown to be better that the individual models that make up an MME. This makes the MME a tool of choice for ensembles.
 - ... but ...
- Many centers move to Unified Modeling Approach (UMA) (Single Model) to simplify operations, and to focus development resources. A main goal of a UMA is to accelerate model improvement.

 Agreed-upon metrics m_t that improves with time from initial skill m₀ at an improvement rate α.

$$m(t) = m_t + (m_0 - m_t)e^{-\alpha t}$$

- Two models with initial skill $m_{0,1}$ and $m_{0,2}$ and with improvement rates α_1 and α_2
- A poor model that improves quicker will catch up with the better model at time t_c

$$t_c = \frac{\ln \beta}{\alpha_2 - \alpha_1} \qquad \beta = \frac{m_{0.2} - m_t}{m_{0.1} - m_t}$$

NCEP Global Models

- Models:
 - GFS (deterministic)
 - GEFS (UMA ensemble)
 - NAEFS (MME)
- Metric:
 - 500 hPa Anomaly Corr.
- Data source:
 - EMC
- Processing:
 - Annual improvement rate α fit to 10 year data.
 - Relative accuracy β fit to last 5 year data

NCEP Global Models

Annual improvement rate α in percent

forecast day	2	4	6	8	10	12	14
GFS	6.4%	4.3%	2.6%	1.5%	0.9%	0.4%	0.2%
GEFS	7.6%	5.1%	3.3%	2.1%	1.4%	0.9%	0.6%
NAEFS	9.2%	6.4%	4.3%	3.0%	2.2%	1.7%	1.2%

Improvement from deterministic to probabilistic forecasts

Relative accuracy in percent

forecast day	2	4	6	8	10	12	14
GFS 🗲 GEFS	-3.4%	13.3%	27.1%	34.0%	34.7%	32.6%	28.6%
GEFS 🗲 NAEFS	25.5%	14.8%	10.5%	8.2%	7.0%	5 .6%	6.5%

Improvement from UMA to MME

Skill

UMA vs. MME Skill Improvement

2008

2019

- MME (NAFES) is better than UMA (GEFS) ensemble by 7-10% currently
- However, an accelerated improvement in GEFS will allow it to catch up with NAFES in a few years

14

Lines for constant α (y⁻¹) for given β and t_c

Subseasonal to Seasonal Forecast Systems

Sub-Seasonal Forecast System (GEFSv13) (0 – 35/45 days)

- Coupled System (FV3+MOM6+CICE5+WWW3+GOCART)
- Weekly coupled DA
- Reanalysis and reforecast (1999-present)
- FY23: Implement GEFSv13

Seasonal Forecast System (SFSv1) (0 – 9/15 months)

- Fully coupled Unified Forecast System
- Fully coupled DA
- Reanalysis and reforecast (1979-present)
- FY24: Implement SFSv1

Community-Based Model Development

The Unified Forecast System (UFS) is a comprehensive, **community-based** Earth modeling system, designed as both a research tool and as the basis for NOAA's operational forecasts.

R2O2R is supported by governance and shared infrastructure

Focused Areas in Development

- Initialization of atmosphere, ocean, sea ice and land with "weakly or strongly coupled data assimilation"
- Coupled initial perturbations
- Stochastic parameterizations
- Forecast configurations (ensemble size, burst and lagged ensemble)
- Model biases, over-confident prediction, and initialization shocks

- Forecasts have become more accurate and reliable thanks to improvements in the initial conditions; in the quality of forecast models; and in ensemble configurations.
- The introduction of coupling to dynamic ocean and seaice models has led to improvements.
- The use of reforecasts has made it possible to extract more meaningful signals from the raw forecast data.
- Calibrated ensemble forecasts have been used in wide applications including energy, retail and agriculture, as well as disaster risk mitigation worldwide.

Thanks!

Global Ensemble Forecast System (GEFSv12)

Model Configuration

- FV3 Dynamic Core, C384L64 (~25km)
- GFSv15 Physics + Stochastic Physics (SPPT+SKEB)
- Uncoupled (NSST + 2-Tier SST from CFSv2)
- One-way coupled to Global Wave Ensemble System (GWES)
- Control member coupled to Aerosols & Chemistry

Frequency

- 5-member, 4 cycles/day
- 20 members out to +16 day per day
- 11 members, every Wednesday, out to +35 day

Reanalysis and Reforecast

- GEFSv12 Reanalysis (20 yr): 1999-present
- GEFSv12 Reforecast (30 yr): 1990-present I.C.: 1990-1998 from CFSR; 1999-present from GEFS Reanalysis

Q1FY20: Start users evaluation

Q4FY20: Implement GEFSv12 into operations

GEFSv11 vs. GEFSv12

GEFSv11 (21 members)	GEFSv12 (31 members)			
GSM	FV3			
ZHAO-CARR MP	GFDL MP			
TL574L64 (~33km) (d1-8)+TL382 (~50km) (d9-16)	C384L64 (~25km) (d1-16) (~25km) (d16-35)			
Climatology relaxation	NSST +2-tiered SST			
Stochastic STTP	Stochastic physics (SPPT + SKEB)			
GSM-GFS EnKF 06 fcst	FV3-GFS EnKF 06h fcst			

GFSv16

Q2FY21: Upgrade to Deterministic Global Model

Model resolution:

- Increased vertical resolution from 64 to 127 vertical levels
- Raise model top from 54 km to 80 km
- Increased horizontal resolution from 13 km to 10 km (proposed)
- •Dynamics: New advection algorithms from GFDL
- Advanced physics chosen from Physics Test Plan:
 - PBL/turbulence: K-EDMF => sa-TKE-EDMF
 - Land surface: Noah => Noah-MP
 - Gravity Wave Drag: => unified gravity-wave-drag
 - Radiation: updates to cloud-overlap assumptions,
 - Microphysics: Improvements to GFDL MP
- Two-way interactive coupling to WaveWatchIII
- Data Assimilation Upgrades:
 - Local Ensemble Kalman Filter (LETKF)
 - 4-Dimensional Incremental Analysis Update (4DIAU)
 - SKEB based land surface perturbations
 - Land Data Assimilation
 - Shifting and Lagging Ensemble Members
 - Improved cloud analysis, NSST, stratospheric humidity

127 levels, 80km top

Stochastic Deep Convective Parameterization Development

Introducing uncertainty contributed by sub-grid scale processes into the deep convective parameterization

Cellular automata (CA) is used to trigger a different number of convective plumes in each grid cell. c/o Lisa Bengtsson, Jian-Wen Bao, CIRES and ESRL/PSD.

Example : SPPT + CA perturbations

compared with SSPT alone.

Example: frequency distribution of 6h precipitation showing that there are fewer drizzle events and more strong precipitation events with CA, which is more like observations.

Courtesy of Tom Hamill

Lines for constant α (y⁻¹) for given β and t_c

Hurricane Modeling

North Atlantic track errors (km)

Hurricane Modeling

Hurricane Modeling

Annual improvement rate α in track error

forecast :	12 h	24 h	36 h	48 h	72h	96 h	120 h
NA 1970 - 2016 :	2.1%	2.7%		3.3%	3.4%		
ENP 1989 - 2016 :	2.7%	3.6%	4.2%	4.4%	4.4%		
NA 2001 - 2016 :	2.9%	3.8%	4.2%	3.9%	3.9%	3.2%	2.6%
ENP 2001 - 2016 :	4.0%	5.1%	5.6%	5.6%	5.4%	5.2%	4.9%

- Intensity errors:
 - HFIP project

Goal to improve by 10% annually for 5 years

RAP / HRRR

29

- High Resolution Rapid Refresh, data provided by Curtis Alexander, using 5 years of data.
 - Temperature, humidity and wind (profiles) improve 5% per year
 - Precipitation skill improved 10% per year
 - Precipitation bias improved by 12% per year
 - HRRR focus on severe weather and precip: HRRR focal areas improve by 5-7% faster than background model improvements

