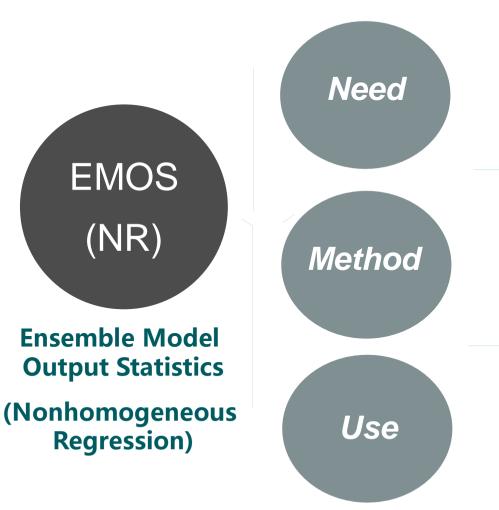
8th NCEP Ensemble Workshop

Probabilistic Precipitation Calibration Using Two-parameter Ensemble Model Output Statistics

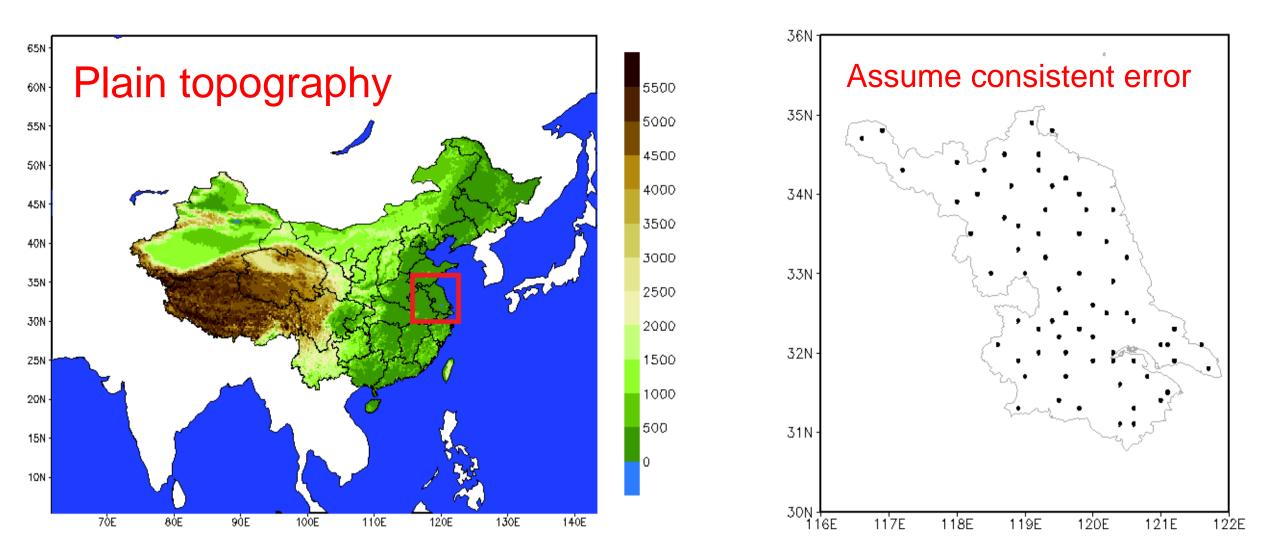
Xiang Su Jiangsu Meteorological Observatory Nanjing 210008, China Aug 27, 2019 at NCEP, College Park

Background



- Reliable probabilistic quantitative precipitation forecast (PQPF) is essential for weather forecast centers and hydro-meteorological applications
- Due to imperfect initial condition and model configuration, ensemble forecast systems are usually subject to biases and dispersion errors
- Statistical post-processing methods are often used to calibrated the raw ensemble forecasts to generate more reliable and accurate probabilistic forecasts
- EMOS is one of the state of art ensemble post-processing techniques (firstly proposed by Gneiting et al. 2005 for Gaussian variables)
- Scheuerer (2014) used EMOS for PQPF based on
 left-censored GEV distribution
- Scheuerer and Hamill (2015) used EMOS for PQPF based on censored shifted gamma (CSG) distribution

Aim: Post-process PQPFs of 70 stations in Jiangsu Province, China



Data

- Observation data: 00-00 (UTC) daily precipitation from 70 rain gauge stations in Jiangsu Province, China.
- Forecast data: ECMWF 24-h ensemble precipitation forecast initialized on 12UTC with 50 perturbed members on 0.5*0.5 degree grid.
- Forecast data is interpolated onto the 70 rain gauge stations.
- Forecast lead time: 012-036h and 036-060h.
- Validation period: June to August, 2017.
- Training method: Train each day individually using 40-day combined symmetric sliding window (20 latest days with observation and 20 days after the forecast day of previous year)

Verification methods

- Continuous Ranked Probability Score (CRPS)
- Brier Skill Score (BSS)
- Reliability Diagram

Station CRPS $\operatorname{crps}(\tilde{G}_i, y_i) = \int_{-\infty}^{\infty} [\tilde{G}_i(t) - H(t - y_i)]^2 dt$

Overall CRPS CRPS =

$$RPS = \frac{1}{Ns} \sum_{i=1}^{Ns} \operatorname{crps}(\tilde{G}_i, y_i)$$

Station BS

 $\mathbf{bs}_{\mathbf{i}} = (p_i - o_i)^2$

1

Overall BS

Overall BSS

$$BS = \frac{1}{Ns} \sum_{i=1}^{N} bs_i$$
$$BSS = 1 - \frac{BS}{BS_{RAW}}$$

Ns

BS decomposition

BS = REL - RES + UNCreliability resolution uncertainty

First-moment bias correction of all ensemble members

Select appropriate distribution function for target variable

Link parameters to ensemble statistics

Minimize CRPS during training period to get optimal parameters

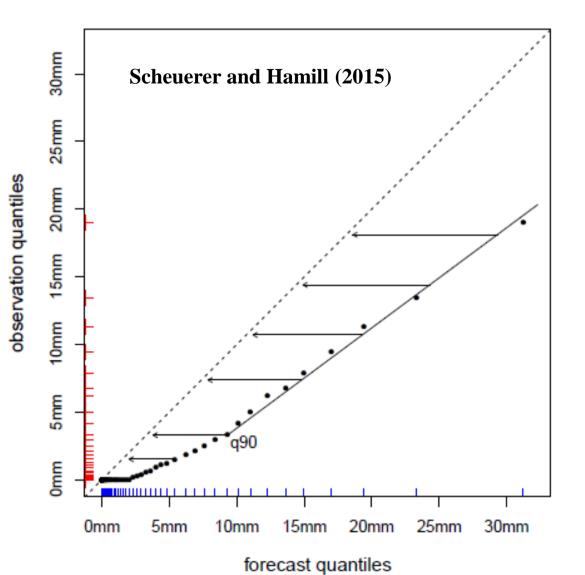
First-moment bias correction of all ensemble members

Select appropriate distribution function for target variable

Link parameters to ensemble statistics

Minimize CRPS during training period to get optimal parameters

Quantile Mapping (QM)



First we calculate forecast and observation quantiles

 $q_f(k/100) = q_o(k/100)$

where $k=1,2,\ldots,99$. Values between the fixed quantiles are linearly interpolated.

For forecast lower than $q_f(k_l/100)$, where $k_l = 90$

the QM corrected forecast is $q_o(k_l/100)$

As for forecast larger than $q_f(k_l/100)$, the QM corrected forecast is

$$\tilde{f}_{x} = \max\left\{q_{o}(k_{l}/100) + \zeta \cdot (f_{x} - q_{f}(k_{l}/100)), 0\right\}$$

Where

$$\zeta = \frac{\sum_{i=k_l+1}^{99} \left(q_f(i/100) - q_f(k_l/100) \right) \left(q_o(i/100) - q_o(k_l/100) \right)}{\sum_{i=k_l+1}^{99} \left(q_f(i/100) - q_f(k_l/100) \right)^2}$$

First-moment bias correction of all ensemble members

Select appropriate distribution function for target variable

Link parameters to ensemble statistics

Minimize CRPS during training period to get optimal parameters

Left-censored Generalized Extreme Value Distribution (GEV) distribution

The cumulative distribution function (CDF) of GEV distribution:

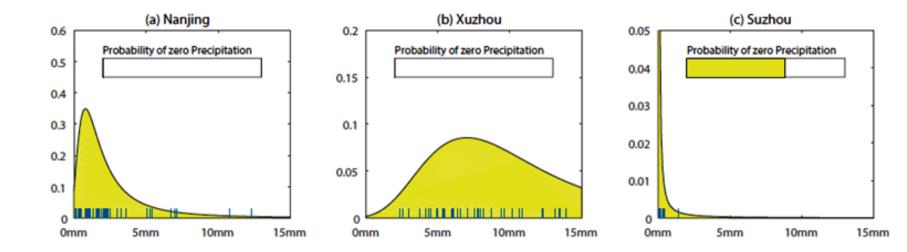
$$G(x) = \begin{cases} \exp\left[-\left(1+\xi\frac{x-\mu}{\sigma}\right)^{-\frac{1}{\xi}}\right], \xi \neq 0\\ \exp\left[-\exp\left(-\frac{x-\mu}{\sigma}\right)\right], \xi = 0 \end{cases}$$

Precipitation is a skewed non-negative variable. The left-censored GEV distribution

$$\tilde{G}(x) = \begin{cases} G(x), x \ge 0\\ 0, x < 0 \end{cases}$$

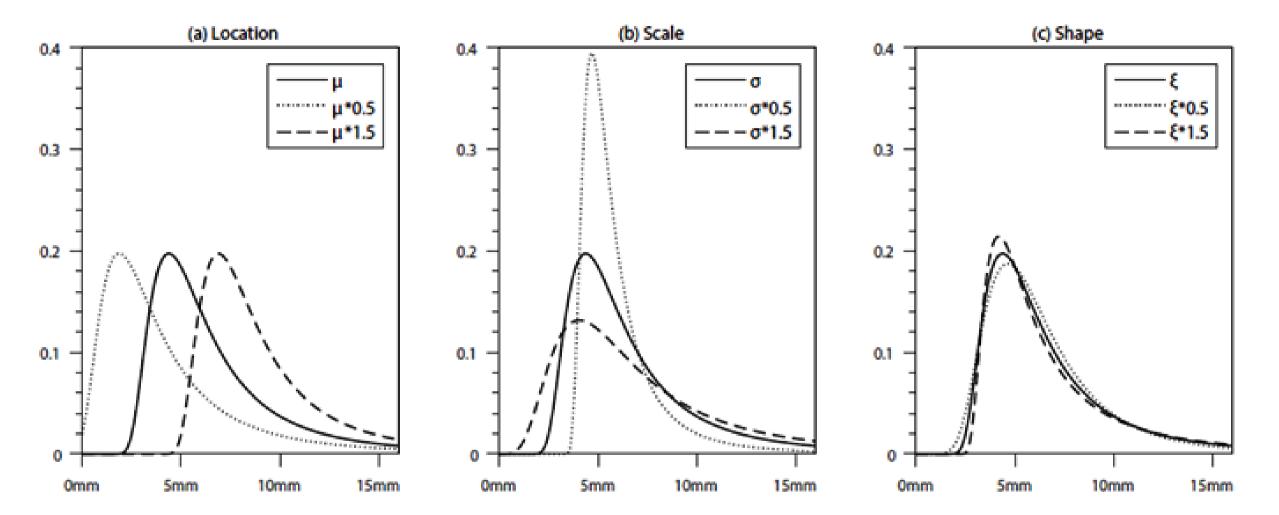
is non-negative, flexible enough and able to extrapolate precipitation extremes with a long tail

Where μ, σ, ξ are location parameter, scale parameter, and shape parameter, respectively. Predictive distribution of daily precipitation (00-00 UTC) on 31 July 2016 fitted by left-censored GEV distribution



Sensitivity of GEV distribution to location, scale and shape parameters by increasing and decreasing a certain parameter value while remain other parameters unchanged.

The **location parameter** mainly adjusts the **predictive mean** and the **scale parameter** mainly adjusts the **predictive variance**, while the distribution is not very sensitive to the shape parameter.



First-moment bias correction of all ensemble members

Select appropriate distribution function for target variable

Link parameters to ensemble statistics

Minimize CRPS during training period to get optimal parameters

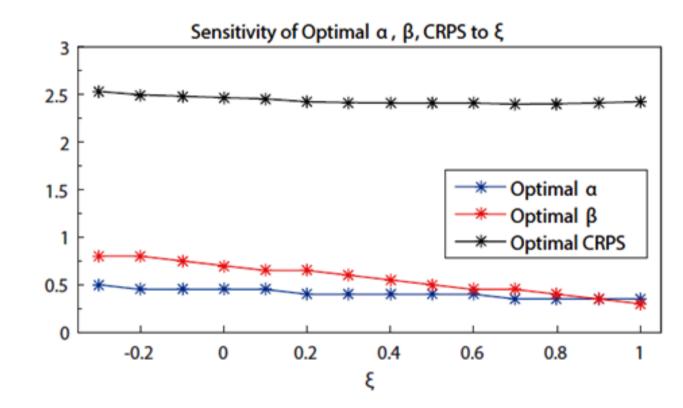
Left-censored Generalized Extreme Value Distribution (GEV) distribution

Take a **linear** relationship between the **location** parameter and **ensemble mean**, and between the **scale** parameter and **ensemble variance**

$$\begin{cases} \mu = \alpha \cdot \left(\frac{1}{M} \sum_{i=1}^{M} X_i\right) \\ \sigma = \beta \cdot \sqrt{\frac{1}{M-1} \sum_{i=1}^{M} \left(X_i - \overline{X}\right)^2} \\ \xi = const. \end{cases}$$

The shape parameter is set to constant. (Lerch and Thorarinsdottir, 2013) In Scheuerer (2014), the shape parameter is always assumed to be between -0.278 and 1.

We tested the different values of shape parameter.



First-moment bias correction of all ensemble members

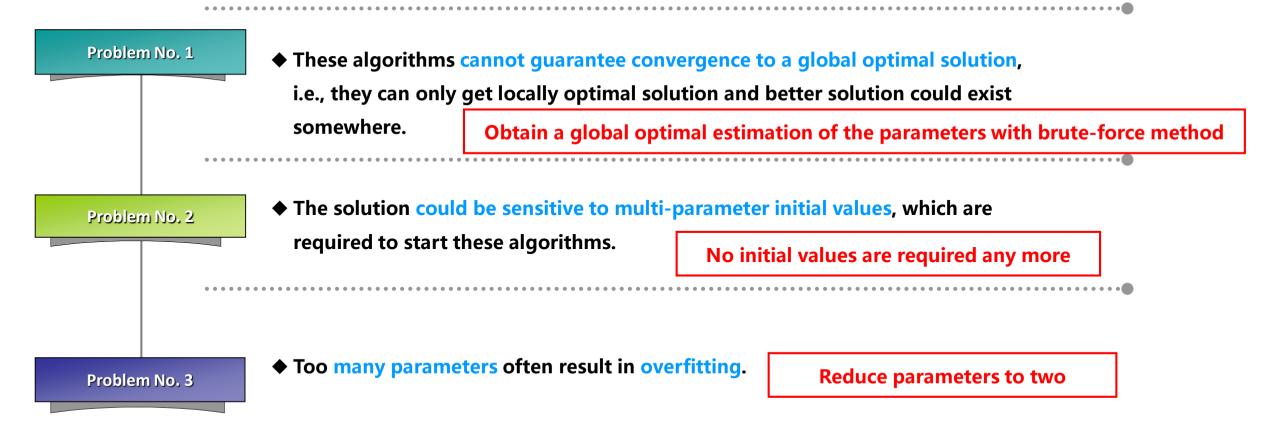
Select appropriate distribution function for target variable

Link parameters to ensemble statistics

Minimize CRPS during training period to get optimal parameters

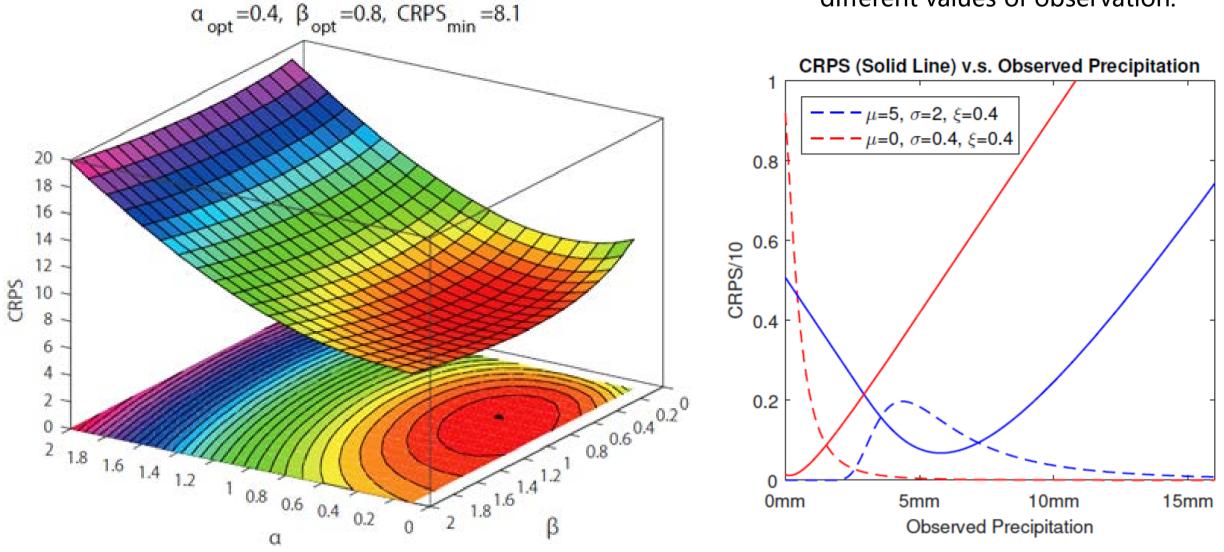
Multi-parameter optimization problem (minimize CRPS)

The quasi-newton method, for example, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, is usually used to obtain the approximate solution.



Brute-force method to minimize CRPS

Given the predictive GEV distribution, how CRPS changes with different values of observation.

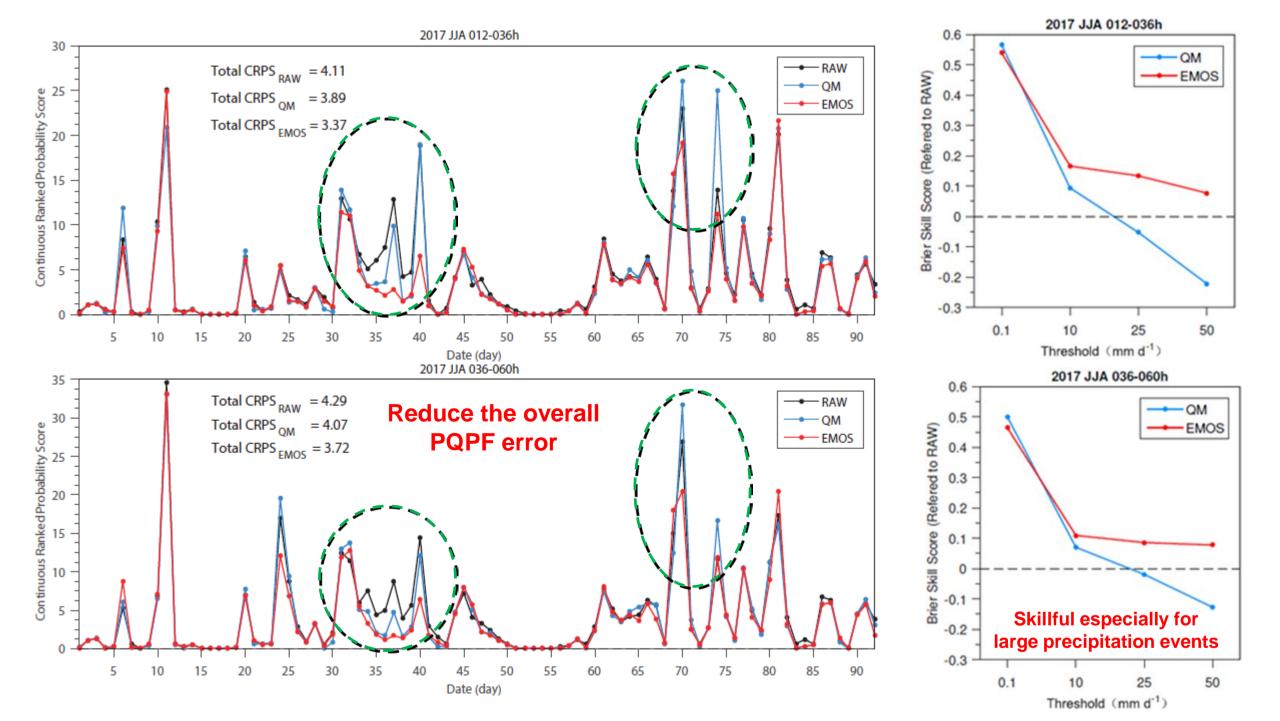


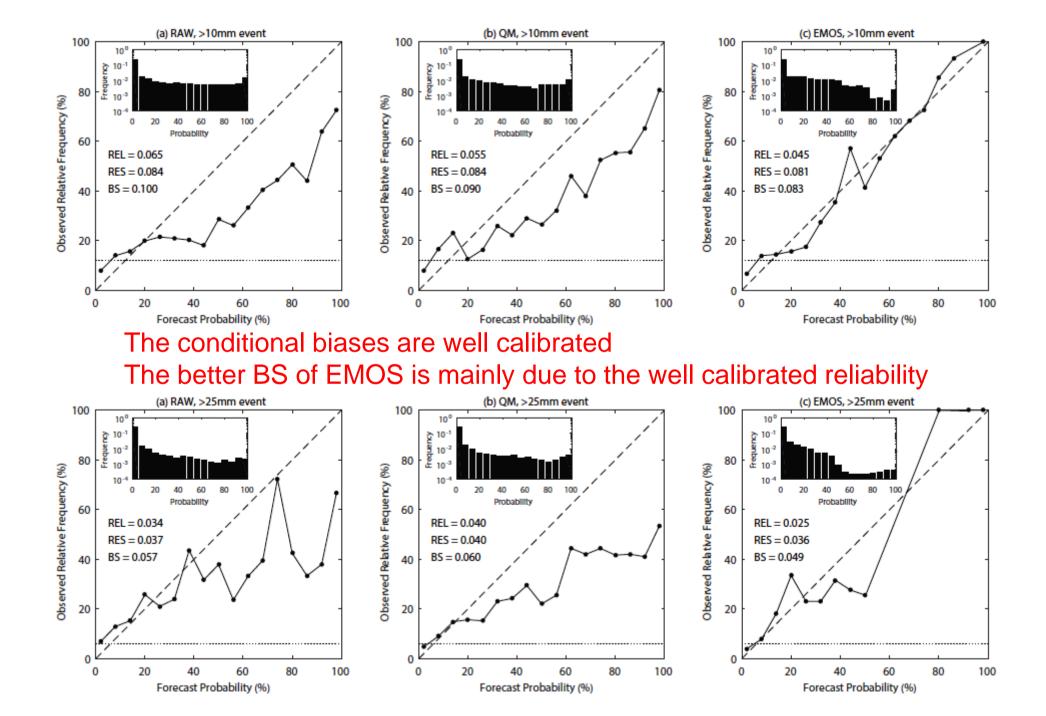
First-moment bias correction of all ensemble members

Select appropriate distribution function for target variable

Link parameters to ensemble statistics

Minimize CRPS during training period to get optimal parameters





Conclusion

- A two-parameter EMOS post-processing model based on the left-censored GEV distribution for the short-term ECMWF ensemble precipitation forecast is proposed.
- The purpose is to avoid overfitting and obtain global optimal solution of model parameters.
- The predictive mean and variance of ensemble precipitation forecast are mainly adjusted by the location and scale parameters respectively, while the predictive distribution is not sensitive to the shape parameter.
- The two-parameter EMOS can reduce overall probabilistic forecast error and improve the probabilistic precipitation forecast skill of different precipitation thresholds during summer time, especially for large precipitation events.
- The good forecast skill of the two-parameter EMOS post-processing model is mainly due to the better calibrated reliability.

Thank you!