

NATIONAL WEATHER SERVICE

NOAA's Global Ensemble Forecast System (GEFS): Operational GEFSv12 and Development of GEFSv13

Bing Fu¹, Yuejian Zhu¹, Philip Pegion², Hong Guan³, Eric Sinsky³, Xianwu Xue⁴, Fanglin Yang¹ and Avichal Mehra¹

1. NOAA/NWS/NCEP/EMC

2. NOAA/OAR/ESRL/PSL

3. Lynker @ NOAA/NWS/NCEP/EMC

4. SAIC @NOAA/NWS/NCEP/EMC, (current: NOAA/NWS/ABRFC)

NOAA's 9th Ensemble User Workshop, August 22-24, 2023 NCWCP, College Park, MD

Outline

- Operational un-coupled GEFSv12
 - GEFSv12 configurations
 - O GEFSv11 vs GEFSv12
 - Highlights of GEFSv12
- Development of coupled GEFSv13
 - GEFSv13 configurations (planned)
 - Ensemble Propotypes (EP1-EP4) targeting GEFSv13
 - Expectations of GEFSv13
- Summary

明

淡

GEFSv12 Configurations

Components	V11 (Dec. 2015)	V12 (Sept. 2020)
GFS Model	Semi-Lagrangian, 2015	FV3 (Finite-Vol Cubed-Sphere)
Physics	GFS13 package (Zhao-Carr MP)	GFSv15 packages (GFDL MP)
Initial perturbations	EnKF f06	EnKF f06
Model uncertainty	STTP (Stoch. Total Tend. Pert)	5-scale SPPT and SKEB
Boundary forcing	SST - Climatology relaxation	NSST + 2-tiered SST
Tropical storm	Relocation for all members	No relocation
Horizontal Resolution	T _L 574 (34km)/T _L 382 (55km)	C384 (25km)
Vertical resolution	L64 (hybrid)	L64 (hybrid)
Daily frequency	00, 06, 12 and 18UTC	00, 06, 12 and 18UTC
Forecast length	16 days	16 days, 35 days (00UTC)
Members	Control + 20 pert members	Control + 30 pert members
Output resolution	0.5° x 0.5°	$0.25^{\circ} x 0.25^{\circ}$ and $0.5^{\circ} x 0.5^{\circ}$
Output frequency	3h the first 8 days; 6h the rest	3h the first 10 days; 6h the rest
Reforecast	EMC offline – 20 years	30 years (1989-2018)
Implementation	December 2 nd 2015	September 2020

ず

Examples of stochastic patterns for SPPT

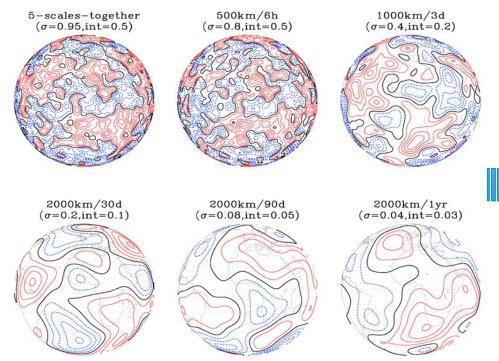
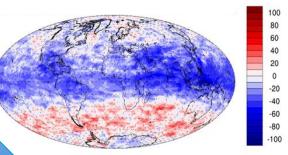
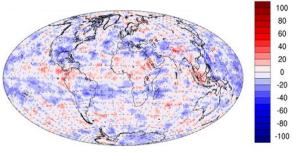




Fig.: 5-scale random patterns used in Stochastic Perturbed Physics Tendencies (SPPT). On the top of each plot, the numbers (except for upper left) represent the scales of spatial and temporal perturbations with the maximum amplitude and contour intervals in the bracket.

500hPa zonal wind Error/Spread ratio

GEFSv11 with STTP

GEFSv12 with SPPT + SKEB

- No radiative perturbation for clear sky
- No perturbation under divided streamline

Building a Weather-Ready Nation // 4

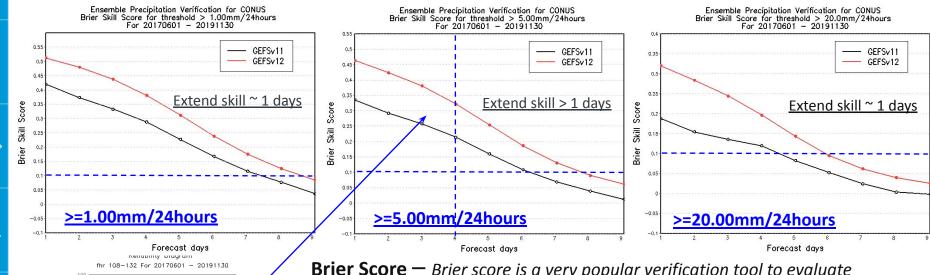
CRPSS of 500hPa geopotentoal height

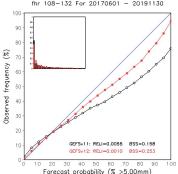
CRPSS — Continuous Ranked Probability Skill Score is one of evaluation tools to measure ensemble based probabilistic forecast. CRPSS=1 is for perfect forecast, CRPSS=0 is for no skill from reference, CRPSS=0.25 is similar to PAC=0.6 (pattern anomaly correlation of ensemble mean). GEFSv12 has better CRPSS for both hemispheres, day-5 and day-10, all two and half years.

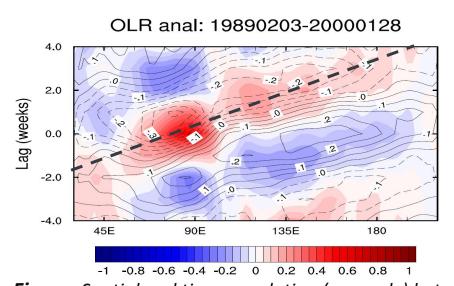
K\$

明

Brier Skill Scores of the CONUS PQPF







Brier Score — Brier score is a very popular verification tool to evaluate (probabilistic) forecast performance. It is easy to decompose to three components (resolution, reliability and uncertainty). BSS=1 is for perfect forecast, BSS=0 is for no skill from reference of climatology. GEFSv12 probabilistic Quantitative Precipitation Forecast (PQPF) is over performance than GEFSv11 for all forecast categories, all forecast lead-time. Statistically, GEFSv12 has extended one more day(s) probabilistic forecast skills over GEFSv11. The forecast is much reliable (left plot) than GEFSv11.

Spatial and Time-Lag Correlation of equatorial OLR and U850 centered in Indian ocean

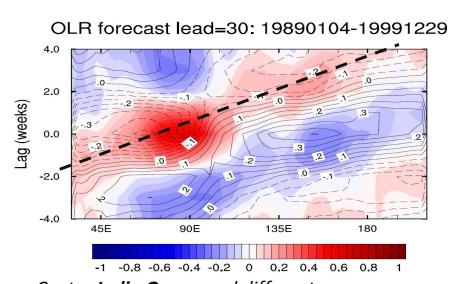


Figure: Spatial and time correlation (anomaly) between Centre India Ocean and different longitudes/time-lag of 11 years analysis (CFSR; left) and 30-day forecast (GEFS ensemble mean; right). The correlation coefficient of OLR is in shaded and 850 zonal wind is in contours.

The statistics indicate that there is a very good eastward propagation of signal (or MJO) from Indian Ocean. However, it is really a challenge to capture northward propagation of India Ocean (Not show).

Highlights of GEFSv12

- Weather -
 - Improved probabilistic forecast skill and predictability
 - Improved PQPF and T2m
 - Improved TC tracks and spread
- Week-2: Weeks 3&4 -
 - An improvement for temperature, precipitation, 500 hPa heights tropical cyclone and stratosphere.
- Wave -
 - Reduce bias and RMSE; An improvement of wave spread.
- Aerosol (control member only) -
 - Improvement in the dust predictions (signals and errors)
- 31-year Reforecasts
 - Support forecast calibration and validation of hydrometeorological application

GEFSv13 Configurations (planned)

Components		V12 (Oct. 2020)	V13 (Q2FY25)			
	Dynamics	FV3 (Finite-Vol Cubed-Sphere) GFSv15	FV3 (Finite-Vol Cubed-Sphere) GFSv17			
	Physics	saSAS, GFDL-MP, K-EDMF, oroGWD	saSAS, Thompson-MP, sa-TKE-EDMF, uGWD			
A+	Initial perturbation	EnKF f06 (previous cycle)	EnKF f00 (early cycle)			
Atmos	Model uncertainty	5-scale SPPT and SKEB	5-scale SPPT, SKEB, SPP, CA			
	Boundary (ocean surface)	NSST + 2-tiered SST	NSST			
	Resolutions	C384L64 (25km)	C384L127 (25km)			
Land	Model	NOAH-LSM	NOAH-MP			
Land	Initial perturbation	N/A	Soil moisture			
	Model	N/A	MOM6 (0.25°L75)			
Ocean	Initial perturbation	N/A	SOCA-Ens			
	Model uncertainty	N/A	5-scale oSPPT and ePBL			
	Model	N/A	CICE6 (0.25°)			
lce	Initial perturbation	N/A	SOCA-Ens			
Wave	Model	WW3 (1-way) (0.5°)	WW3 (2-way) (0.25° lat/lon grid)			
Aerosol	Model	GOCART (1-way)	GOCART (2-way)			

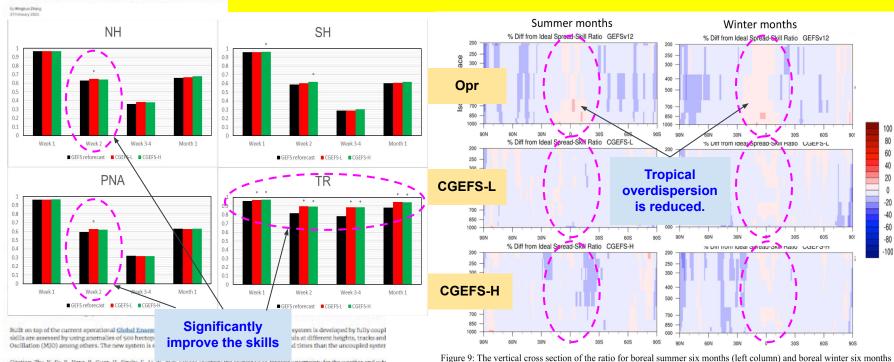
Updated stochastic physics

- Cellular Automata (CA)
 - stochastic parameterization of cumulus convection
- OCN SPPT:
 - temperature, salinity, layer thickness
- OCN_ePBL:
 - generation and destruction of ePBL
- SPP (perturb cloud fraction)
- SPPT/SKEB tuning

Ensemble Prototypes targeting GEFSv13

	EP1(p5) (C384L64, OCN_L75)	EP2(p7) (C384L97,OCN_41)	EP3(p8) (C384L97,OCN_41)	EP4(HR1+) (C384L127,OCN_75)		
phy	Hybrid-EDMF Sa-SAS GFDL-MP GWD (stationary oro) NOAH-LSM 	Sa-TKE-EDMF Sa-SAS GFDL-MP GWD (stationary oro) NOAH-MP NSST	Sa-TKE-EDMF Sa-SAS Thompson-MP uGWDv0+GSL NOAH-MP NSST	Sa-TKE-EDMF Sa-SAS Thompson-MP uGWDv0+GSL NOAH-MP NSST		
stoch	SPPT (25% off) SKEB (0.7)	SPPT(30% off) SKEB (0.7) CA pert_mp, radtend ocnSPPT(100%) ePBL(100%)	SPPT (25% off) SKEB (0.8) CA pert_mp, radtend ocnSPPT(100%) ePBL (100%)	SPPT (30% off) SKEB (0.8) CA pert_clds ocnSPPT(100%) ePBL (100%)		

GEFSv13 Prototype Experiments - EOS highlights


Eos

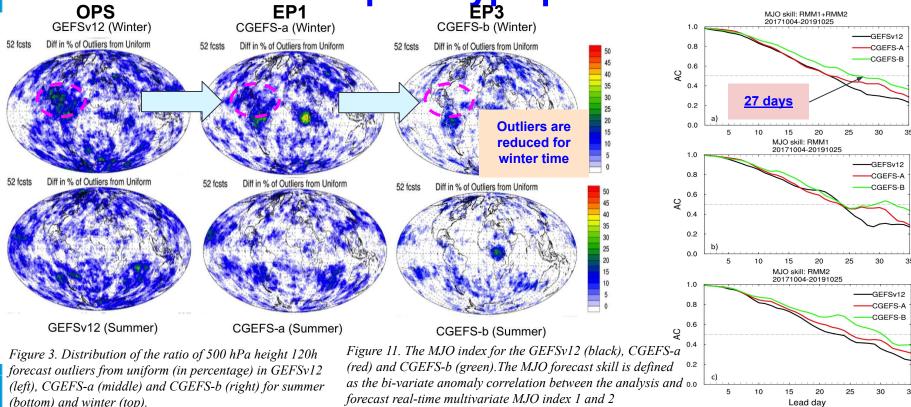
A New Coupled Modeling System Improves Forecast Skills

Building on older versions, the new Global Ensemble Forecast System with coupled atm

Editor's highlights - JGR Atmosphere (2023) --- Zhu, Y., B. Fu, B. Yang, H. Guan, E. Sinsky, W. Li, J. Peng, X. Xue, D. Hou, X.-Z. Liang and S. Shin, 2023: Quantify the Coupled GEFS Forecast Uncertainty for the Weather and Subseasonal Prediction.

GEFSv12 reforecast (top), CGEFS-L (middle) and CGEFS-H (bottom).

Atmospheres, 128, e2022JD037757: https://doi.org/10.1020/2022JD037757


Citation Zhu, Y., Fu, B., Yang, B., Guan, H., Sinsky, E., Li, W., et al. (2023). Quantify the coupled GETS forecast uncertainty for the weather and sub-

⁻Minghua Zhang, outgoing Editor in Chief, JGR: Atmospheres

(right column) of zonal wind from surface (1000hPa) to 200hPa in vertical, for 144 hours (6 days) forecasts, and for the

GEFSv13 ensemble prototype performances

Bing Fu et al. 2023: Weather to subseasonal prediction from the UFS coupled Global Ensemble Forecast System

GEFSv13 Expectations

- The benefits from coupled GEFS
- Further improvement of probabilistic forecast (PQPF, T2m and TC)
- Improvement of MJO predictions (propagation, intensity and skill)
- Improvement from two-way coupling
- New products for the ocean and sea ice
- 30 years GEFSv13 reforecast for model calibration.

Summary

- GEFSv12
 - Configurations: (1-way coupled)
 - ATM (C384L64) WAV CHM
 - Implementation: (September 23, 2020)
- GEFSv13
 - Configurations: (fully-coupled)
 - ATM (C384L127) OCN ICE WAV CHM
 - Planned implementation time:
 - Q1FY26 GEFSv13 implementation