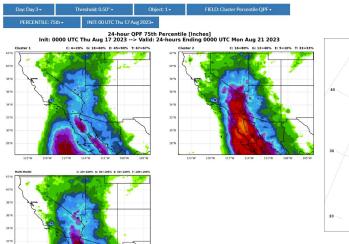
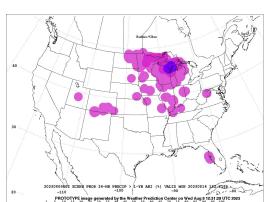
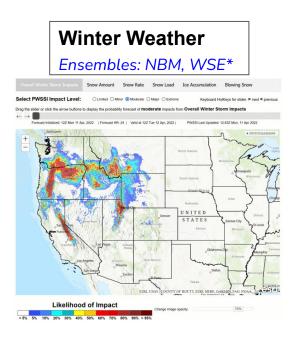
WPC Ensemble Review and Requirements

Mark Klein, Science and Operations Officer NOAA/NWS Weather Prediction Center

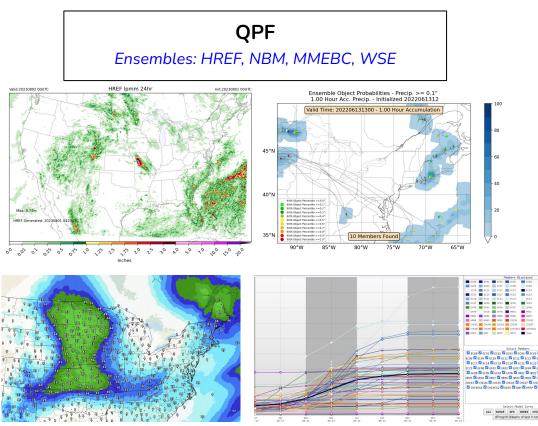

WPC uses ensemble guidance extensively


Medium Range (Day 3-7)

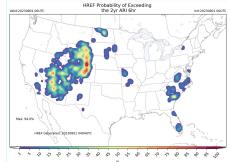

5.00 7.00 10.00 15.00

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

Ensembles: GEFS, GEPS, EPS, NBM, MMEBC*

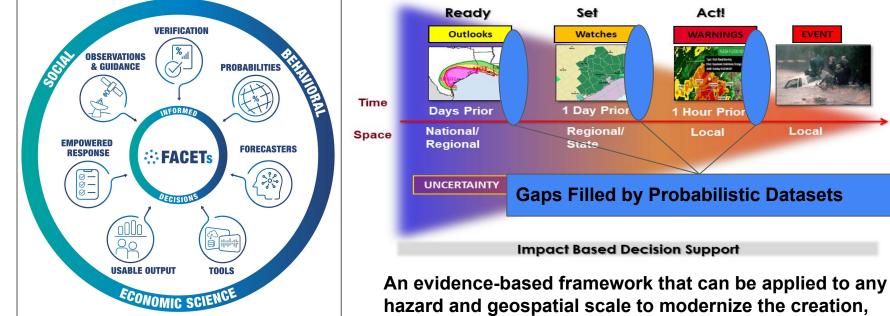

*MMEBC - WPC's Multi-model Ensemble Bias Corrected QPF *WSE - WPC's Superensemble

1.25 1.50 0 1.75 2.00 2.50 3.00 4.00

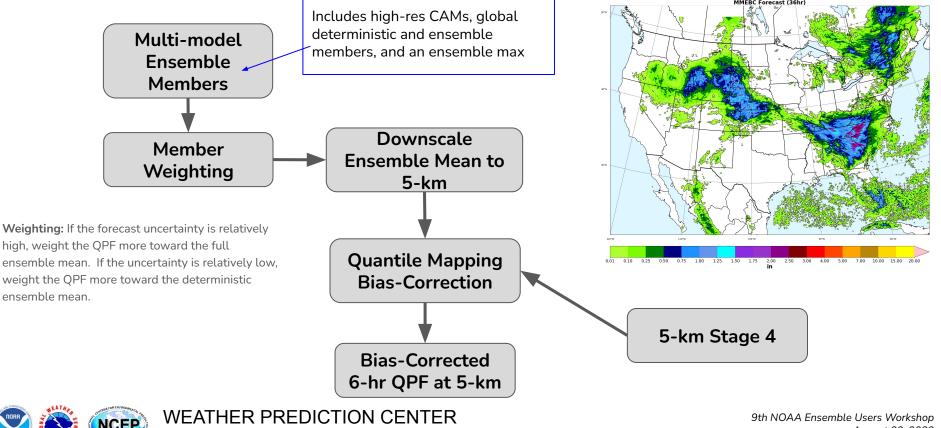

0.25 0.50 0.75

WPC uses ensemble guidance extensively

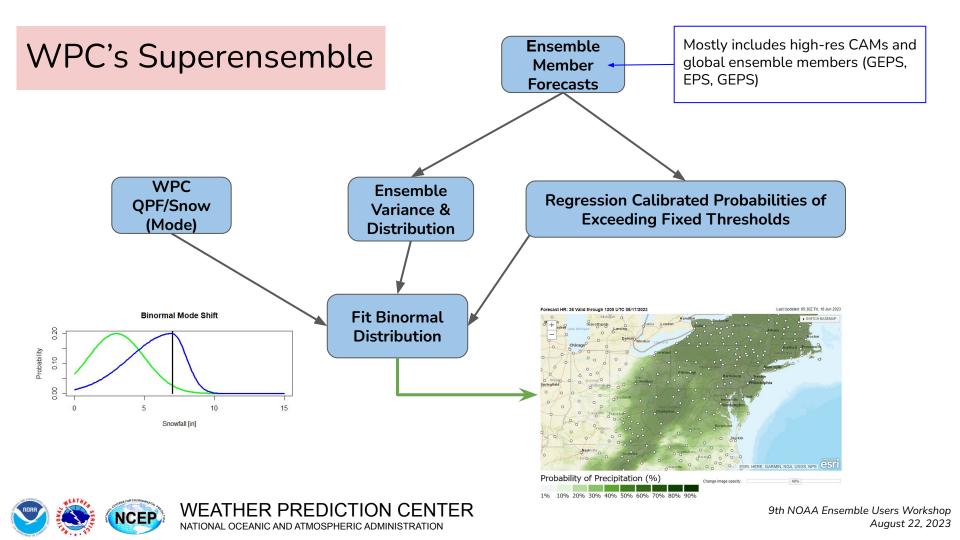
Excessive Rainfall/MetWatch Ensembles: HREF, WoFS, GEFS, NBM



9th NOAA Ensemble Users Workshop August 22, 2023


WEATHER PREDICTION CENTER NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

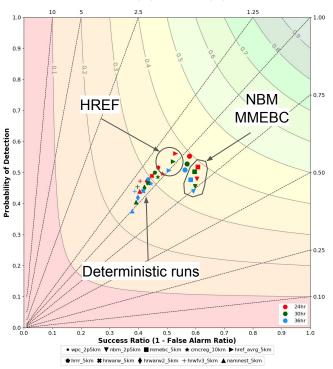
Evolution Toward Probabilistic Information as the Foundation for IDSS (i.e. FACETS)

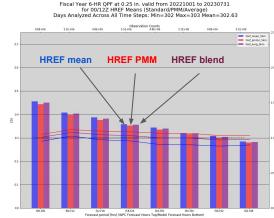

hazard and geospatial scale to modernize the creation, communication, and effective dissemination of risk-based, probabilistic information for effective response

WPC's Multi-Model Bias-Corrected (MMEBC) QPF

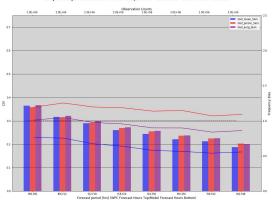
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

August 22, 2023

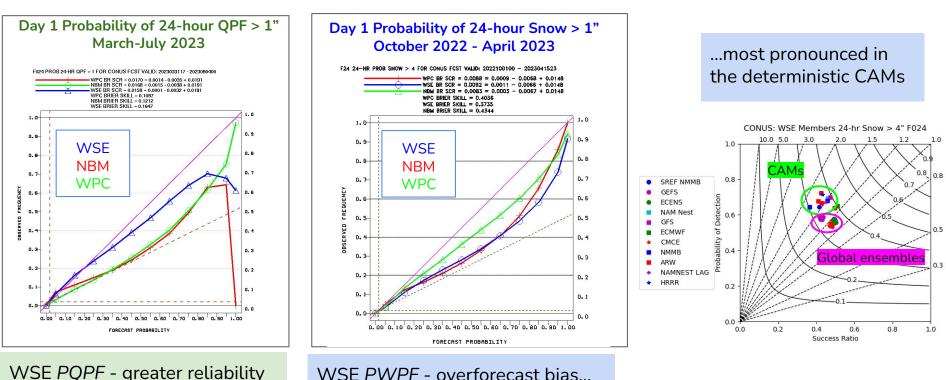



Ensemble Performance - Short Range QPF

WEATHER PREDICTION CENTER


NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

MET Fiscal Year Performance Diagram for 24 HR QPF at 1.0 in Valid 12Z 10/01/2022 to 12Z 06/30/2023

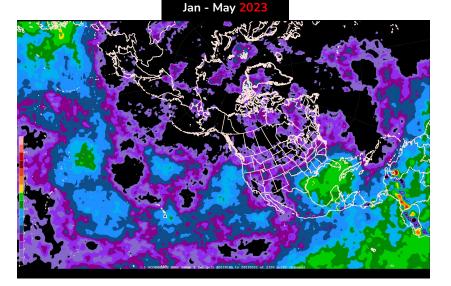

Fiscal Year 6-HR QPF at 0.5 in. valid from 20221001 to 20230731 for 00/12Z HREF Means (Standard/PMM/Average) Days Analyzed Across All Time Steps: Min–30Z Max=303 Mean=302.63

- HREF outperforms deterministic runs, with better bias than NBM, MMEBC
- At 6-hour QPF .25" threshold, simple HREF mean is superior
- At higher thresholds, blended HREF (50% mean; 50% PMM) is best

Ensemble Performance - WPC's WSE

WSE *PQPF* - greater reliability than NBM (less overprediction)

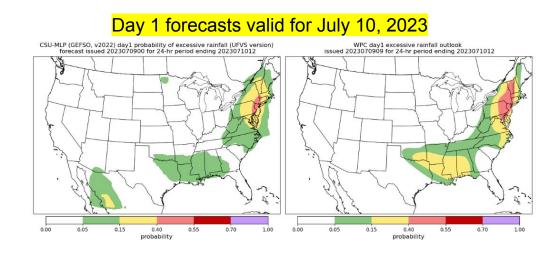


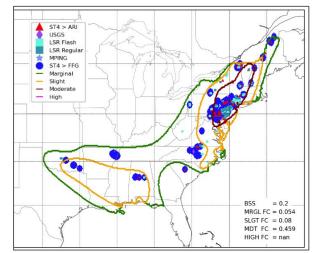

WEATHER PREDICTION CENTER NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

GEFS Spread

Percentage of GEFS 5-day Height Forecasts verifying OUTSIDE the Envelope

Jan - May 2019

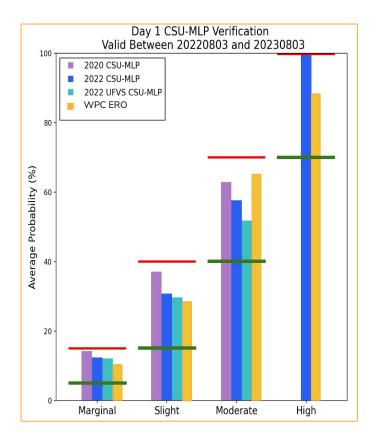

Underdisperiveness has notably improved in the mid-latitudes with GEFSv12 Not sure what's going on in the lower latitudes



ERO Guidance: Colorado State University Machine Learning Probabilistic tool

- Random forest technique trained using the GEFSv12 reforecast (~11 years); run operationally with GEFS
- Provides a 'first guess' ERO; trained using flood reports, flash flood guidance and Average Recurrence Interval (including 2- and 5-year) exceedances
- Predictor variables include QPF, precipitable water, CAPE, PMSL, 2-m mixing ratio

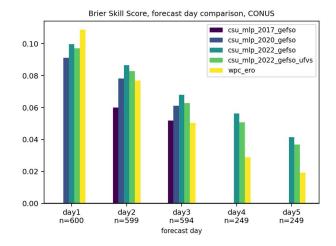
Analysis



9th NOAA Ensemble Users Workshop August 22, 2023

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

CSU MLP - How does it perform?



WEATHER PREDICTION CENTER

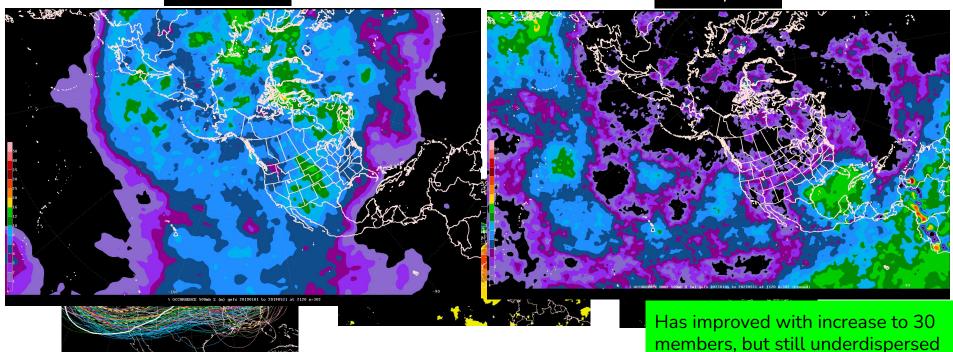
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

Reliability on par with WPC's ERO

Skill out to Day 5!

WPC's Ensemble Requirements

- RRFS requirements
 - GFS not adequate to replace the NAM (60-84 hour time frame). Need RRFS run to 84 hours (even 1 member)
 - Adequate skill-spread and performance at the level of HREF
 - Isolated extreme precip rates remains a concern
- Probabilistic fields for specific hazards (e.g. exceedance probabilities for heat index, wind chill, probability of QPF exceeding ARIs from the GEFS) → Weather in Context
- Probability and Local probability matched mean (GEFS)
- Individual ensemble member explicit accumulations of precipitation types (GEFS)
- Support for reanalysis data sets (supporting AI/ML Development)
- Continue to improve under-dispersion of ensemble systems
 - Improved, but still a persistent challenge for the GEFS
- Improved access to updated verification data (EVS?)



GEFS Spread

Percentage of GEFS 5-day Height Forecasts verifying OUTSIDE the Envelope

Jan - May 2019

Jan - May 2023

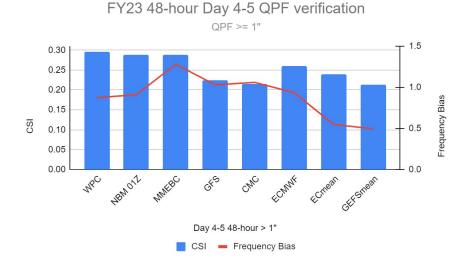
WEATHER PREDICTION CENTER NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

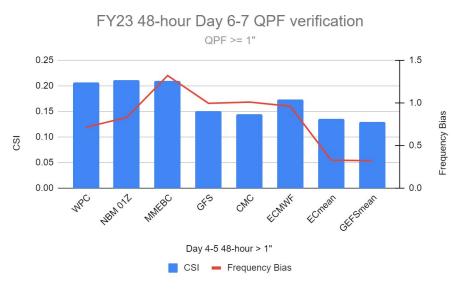
Future Work: The Urban Rainfall Rate Dashboard

CONCEPT: Dashboard of the forecast probability of hourly rainfall rates. The key benefits of this project are actionable information for city managers to anticipate threats from extreme rainfall up to 2 days in advance.

Example - know that a city starts to be overwhelmed at the 10 year storm threshold

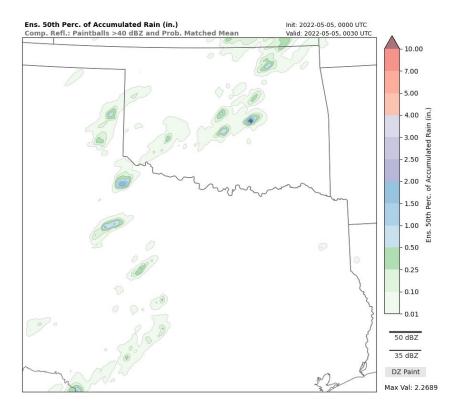
- 10% probability of critical threshold = yellow
- 30% probability of critical threshold = red
- 50% probability of critical threshold = purple

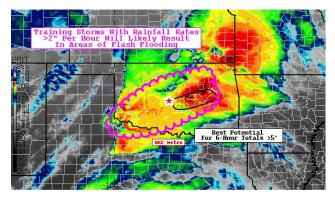

Given the variety of city thresholds, user can choose the:


- 5 year,
- 10 year, and
- 100 year storm probabilities

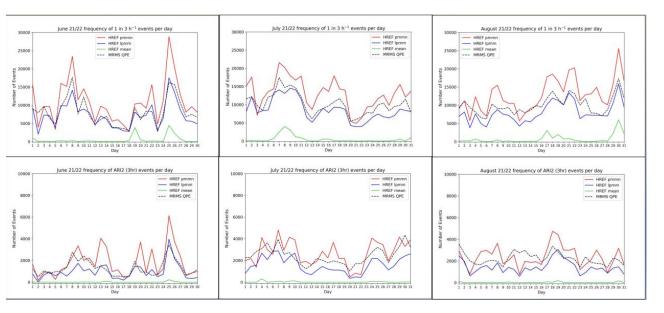
sc-Proving SPEE Run Viewing Old SPEE Run (View Latest) New 1500 UTC Fri 14 Mar 2014 2100 UTC Fri 14 Mar 2014 0300 UTC Si Updated : 1921 UTC Fri 14 Mar 2014 Updated : 0117 UTC Sai 15 Mar 2014 Updated : 015 UTC Si Current Time: 15:07:26 UTC Mon 17 Mar 2014 Updated : 012 014																Mar														
A	uto U	pdate		ARTO	cc: 🖌	LL	¢	Regio	n: 🚺	Aid A	Atlar	tic	° s	ort:	Clin	nate		0	Impa	cts F	rst: (Hid	e Nor	ninal	: 🗆 2	4h S	now:	8	Reset]
Fri 21Z	Sat 00Z	Sat 03Z	Sat 06Z			Sa 15				un :	Sun 03Z	Sun 06Z	Sun 09Z	Sun 12Z		un Sa												Tue 03Z	Tue Tue	Tue 09Z
KIAD																	S	S	SV	SV	SV	SV	S						1	
▶ KBWI	+	+	+	-†	_	1				┢	t	+	+	+			s	S	S	sv	SV	SV	SV	S	ň	ĩ	i –	Ť	î	1
• KDCA	\rightarrow		1								ϯ	╈	╈	_				S	S	SV	SV	SV	SV	S	í –	í	ĩ	Ť	Ŷ	1
• KCLT	Ť		t	_		1					ϯ	Ť	1	-												1				
KROA			Ť								Ť		Ť	Ť			S				۷	V	S	S						
KAVL			Ť								T			T															V	
KTRI	Ť		Ť								Ť		Ť	Ť											t	Ť.				
ксно			Ť								T			T			S	S	S	SV	SV	SV	S			Ĵ)	<u>וווו</u>)	
KRIC			T								T								S	S	S	SV	S	S		jĒ) –)	1)[[]
KTYS			Ť																											
KGSO			Ť	Ť							T	T	Ť	Ť						F					T					
KPHE						-						_							-		-		(S	1	1	10	10	1	1

https://aviationweather.gov/decisionsupport/winter dashboard


Ensemble Performance - Medium Range QPF



Warn-on-Forecast System (WoFS)



WPC MPD Graphic Highlighting a Hatched Corridor

"...it is here where the combination of merging cells and adjacent mean flow to the warm front will cause a swath of intense convection that generates excessive rainfall rates. The experimental **(1)** 00Z WoFS showed a series of training 40 dBZ paintballs across the mid-section of Oklahoma with the area seeing the longest residency time being east of OKC. **(2)** Remarkably, the QPF 50th percentile of the 00Z WoFS between 00-06Z included a maximum of 8" east of OKC with the **(3)** 90th percentile even higher. **(4)** It also identified a >60% chance for WoFS ensemble probabilities of rainfall rates >2"/hr east of OKC this evening **(5)** between 02-05Z.

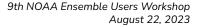
Ensemble Performance - Short Range QPF

Presented at HMT's Flash Flood and Intense Rainfall experiment - July 13, 2023

WEATHER PREDICTION CENTER

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

Compares HREF mean, PMM, LPMM and MRMS (observed) frequency of:


- 1"/3-hour events
- 3-hour QPF exceeding the 2-year ARI

HREF mean - rarely predicted heavy rainfall

PMM - mostly overpredicted frequency of events

LPMM - slight underprediction, but probably best match to MRMS

