OSTI Perspectives and Current NOAA Development of Ensemble Systems

Kevin Garrett, OSTI Modeling Program Director

Contributions from: Youngsun Jung, Aaron Poyer, Yan Xue

·

Å

K

DOD

NOAA

NATIONAL

WEATHER

SERVICE

Ä

जै.

 κ

咒

 \square

512

"An unbiased appreciation of uncertainty is a cornerstone of rationality – but it is not what people and organizations want. Extreme uncertainty is paralyzing under dangerous circumstances, and the admission that one is merely guessing is especially unacceptable when the stakes are high. Acting on pretended knowledge is often the preferred solution."

— <u>Daniel Kahneman</u>

"People want certainty; how do you present uncertainty in certain terms" ... and lead them to the best decision?

NATIONAL WEATHER SERVICE

w_{at}(Lead time) x w_{au}(Uncertainty) = Action/Preparedness_a

Where w is the weight for event type a

This map denotes the approximate location for each of the 15 separate billion-dollar weather and climate disasters that impacted the United States January – September of 2022.

Types of extreme events require unique levels of certainty at various lead times to take action, e.g. increase preparedness/resiliency, or evacuation. Within some lead time, information is unactionable.

NATIONAL WEATHER SERVICE

ž

औ

R

四

12

Ensembles key to mission and priorities

2.6: Build and Operate the world's best community-based and cross-platform numerical Earth modeling system, **with advanced ensemble prediction capabilities at all timescales**, through collaboration with our Enterprise partners, enabling increased seamless actionable warning and forecast accuracy in extended time frames.

Priorities & Action Strategies for the Future - "Ken's 10"

ž

औ

x

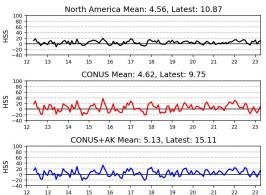
四

Short-Term/Quick Wins		Medium-Term		Long-Term/Strategic		Watchlist Underway and Well in Hand	
Slack/NWSChat Conversion		Tsunami Program) 🝚 🛞	Ops Model & Staffing Requirements	0	Flood Inundation M & Next Gen Water Framework	
Spot Forecast	٩	Weather.gov	۱	NWS IT Architecture & IT Governance	٩	Shift Flexibility Team	
CMU Next Steps & Governance Update	۱	AWIPS in the Cloud		DEIA: Recruitment		DEIA Tiger Team Task Force	
Completed:	Radar Lite & – Access and	Radar GIS	Probabilistic IDSS/ Hazard Services		Inits	ext Gen Idar	

Requirements: e.g. CaRDS 22-023 (PIC approval in progress)

"Improve the ensemble spread in order to better capture extreme weather events"

	Priorities in Weather Research (PWR) Report Recommendations
ID-4	Prioritize research on equitable and effective use of hazardous weather information - to better understand and inform diverse hazard and risk assessment needs, protective decisions and action
ID-5	Develop and evaluate probabilistic and deterministic hazard information delivery capabilities for diverse end-users -for rapid dissemination of useful products and to strengthen decision support
ID-6	Build capacity to collect and analyze baseline and event-specific social and behavioral data -to learn what weather information is needed when, by whom, and how it can and will be used
FE-3	Accelerate the NOAA Artificial Intelligence (AI) Strategy and expand artificial intelligence research -to provide higher quality and more timely products and services for societal benefits
FE-6	Immediately invest and develop plans for substantially more computing resources -in order to achieve the goals recommended in this report that are vital to enhance the U.S. Weather Enterprise
FE-7	Convert, prepare for, and leverage emerging high performance computing architectures -to keep pace with technological advances and develop the software tools and IT workforce for the future


NATIONAL WEATHER SERVICE

Emphasis added

Modeling/supplemental program activities

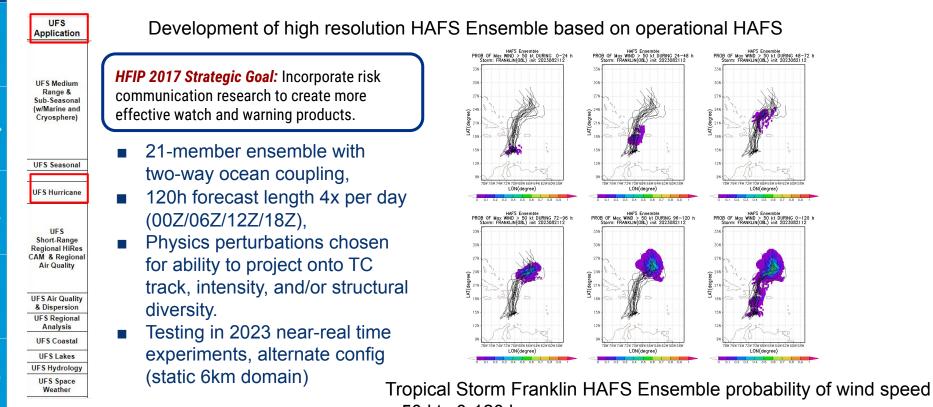
.

		GEFS v13	SFSv1	Precipitation - Lead 5 (12-2022) North America Mean: 4.56, Latest: 10.87	
UFS Medium Range & Sub-Seasonal (w/Marine and Cryosphere)	Ens size	31 or 90 members	12, 36, or 100 members		
	Res	25 or 35 km	25, 35 or 50 km	12 13 14 15 16 17 18 19 20 21 2 CONUS Mean: 4.62, Latest: 9.75	
UFS Seasonal UFS Hurricane UFS	ICs	Coupled GDAS/Stoch phys.	EnKF/phys. tendencies/phys. param perturbations	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	
Short-Range Regional HiRes CAM & Regional Air Quality	Schedule	Daily (00/06/12/18)	1-2 times/month		
UFS Air Quality & Dispersion UFS Regional Analysis	Lead Times	16 days (45 at 00Z)	96 days-1 year	North American Multi-Model Ensemble (NMME) Precipita	
UFS Lakes	Compute	1.3M core/hrs at 25 km	4M core/hrs at 25 km	scores (HSS) 2012-2023 https://www.cpc.ncep.noaa.gov/pro	
UFS Hydrology UFS Space Weather	Implementation Q1FY26		>FY27	NMME/verif/seasindex.html	

Precipitation -2023 aa.gov/products/ tml

NATIONAL WEATHER SERVICE

ž


3

K

DO:

17

Modeling/supplemental program activities

> 50 kts 0-120 hrs https://www.emc.ncep.noaa.gov/HAFS/HAFSEPS/tcall.php

NATIONAL WEATHER SERVICE

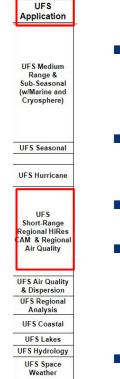
ž

औ

R

四日

The second


Building a Weather-Ready Nation // 6

LON(degree)

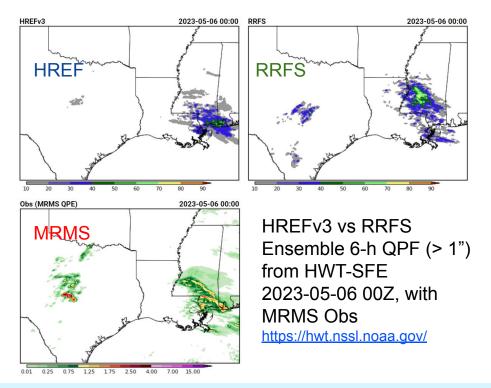
LON(dearee)

HAFS Ensemble

Modeling/supplemental program activities

ž

त्रौ


R

四

77

Development of the Rapid Refresh Forecast System (RRFS) Ensemble

- Replace all CAM guidance with a single North American domain forecast ensemble running at 3 km grid spacing
- ~ 10-member ensemble including time-lagged members + deterministic forecast
- 60h forecast length 4x per day (00Z/06Z/12Z/18Z)
- IC perturbations subset from ~30 member EnKF; Stochastic physics and (possibly) multiphysics; LBC perturbations from GEFS
- Current development focused on improving ensemble spread

Building a Weather-Ready Nation // 7

NATIONAL WEATHER SERVICE

Other thoughts

- Mixed program oversight (OSTI/WPO through UFS-R2O, HSUPs, BIL/IRA etc) but the bottom line is UFS advancement is a community effort
- Ensemble spread should represent actual model uncertainty. Should the spread naturally reduce over time (upgrade-to-upgrade)?
- Utility of calibrating/weighting members for post-processing vs. improving ensemble approach/design (algorithms/AI can learn systematic underperformers, but why waste the CPU to generate them?)
- HPC barriers: limited operational compute means more compute needed to optimize ensemble approach (size, resolution, lead time, etc). Explore Al/emulation of ensembles
- Improving communication and understanding of probabilities: remove perceptions, biases of decision makers/stakeholders. Transform messaging

ž

औ

x

四

औ

 \approx

哭

 \square

BACKUP

<u>त्री</u> क्षे

NATIONAL WEATHER SERVICE

Key Messages (HREF, SREF, RRFS)

- Current ensemble capabilities (By system, HREF, SREF, GEFS. Provide details: Resolution, number of members, lead time, initialization time, strategy/schemes e.g. configurations and/or perturbations)
 - HREF
 - Combines multiple ~3 km models (HiresW + HRRR + NAM nest) and their time-lagged runs into an 10-member system for ensemble product generation
 - Provides guidance to 48 h for severe weather, aviation, QPF, winter weather, and general forecasting applications
 - Initialized twice a day (00Z/12Z for CONUS and Hawaii, 06Z/18Z for Alaska and Puerto Rico)
 - SREF
 - Used to assess the mesoscale environment for hazardous weather
 - Ensemble members are constructed using either a single model with different initial conditions or different models with the same initial conditions
 - 16 km horizontal grid spacing, 26-member ensemble, initialized every 6 hours (03Z/09Z/15Z/21Z)
 - Output is available at 3h intervals through 87 hours
- Current ensemble development (RRFS, HAFS/surge, GEFS, SFS).
 - RRFS
 - Replace all CAM guidance with a single North American domain forecast ensemble running at 3 km grid spacing
 - ~ 10-member ensemble including time-lagged members + deterministic forecast
 - 60h forecast length 4x per day (00Z/06Z/12Z/18Z)
 - IC perturbations subset from ~30 member EnKF; Stochastic physics and (possibly) multiphysics; LBC perturbations from GEFS
 - Requires 184K cores / 6.6 PFlops for operations and x6 for R&D (rough estimates)

NATIONAL WEATHER SERVICE

Building a Weather-Ready Nation // 10

12

ž

औ

R

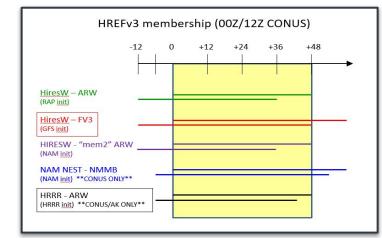
四

Rapid Refresh Forecast System (RRFS)

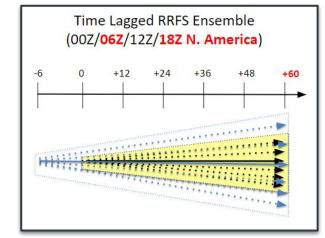
- Replace all CAM guidance with a single North American domain forecast ensemble running at 3 km grid spacing
- ~ 10-member ensemble including time-lagged members + deterministic forecast
- 60h forecast length 4x per day (00Z/06Z/12Z/18Z)
- IC perturbations subset from ~30 member EnKF; Stochastic physics and (possibly) multiphysics; LBC perturbations from GEFS
- Requires 184K cores / 6.6 PFlops for operations and x6 for R&D (rough estimates)

Building a Weather-Ready Nation // 11

12


ž

औ


K

四

RRFSv1 Forecast Ensemble Design

- 5 on time members + 5 time lagged
- 48H forecast length 2x per day
- Multi-dycore (3)
- ICs from NAM + nests, RAP, HRRR, GFS
- Multiphysics

- 12 Time lagged members (complete N. America coverage)
- 60H forecast length 4x per day (54H w/ time lagging)
- Single dycore
- IC perturbations subset from ~30 member EnKF
- Stochastic physics and (possibly) multiphysics
- LBC perturbations from GEFS
- RRFSv1 ensemble design leveraging HRRRE development and HIWT, UFS-R2O projects to incorporate methods of representing uncertainty (multiphysics, SPP, etc.)
- <u>Testing is ongoing to determine if v1 will have multiphysics membership</u>

[Jacob Carley (2023, 28th NWP Conf.)]

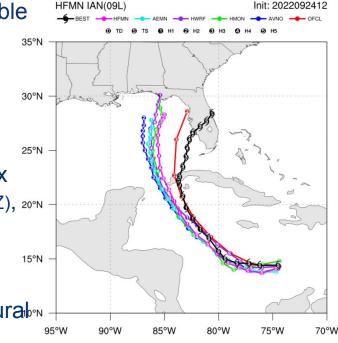
Building a Weather-Ready Nation // 12

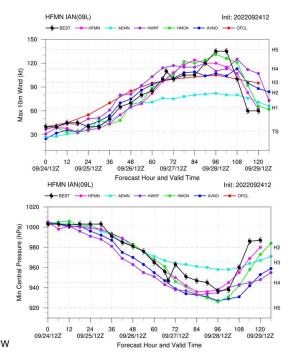
Ł

ž

औ

R


哭

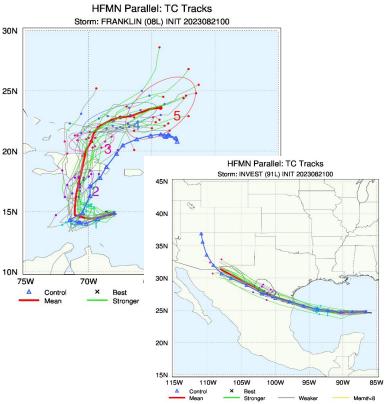

515

Hurricane Analysis and Forecast System (HAFS) HAFS Ensemble Real-time on Cloud (HERC)

- High resolution ensemble developed from operational HAFS,
- 21-member ensemble with two-way ocean coupling,
- 120h forecast length 4x per day (00Z/06Z/12Z/18Z), 20°N
- Physics perturbations chosen for ability to project onto TC track, intensity, and/or structuralen diversity.

12

ż


॑॑॑

K

THE

Hurricane Analysis and Forecast System (HAFS) Real-time DA experiment on Jet

- Plan: Self-cycled DA system on a static
 6-km domain
- 20 ensemble members, 10 running 6h forecasts for EnKF only, 10 run 5-day forecasts.
- Possible pivot due to limited compute resources on jet real-time:
 - Run the DA system only (6 h forecasts ^{15N} for 20 members) within jet reservation, and run 5-day, 10-member ensemble ^{10N} forecasts option on other rdhpcs.
- If resources insufficient, will evaluate the 5-day ensembles after season, rather than real-time.

Building a Weather-Ready Nation // 14

ž

औ

K

四

 \square

12

Subseasonal Global Ensemble Forecast System (GEFS)

- GEFSv12:
 - Implementation 2020, atmos-land-waves (FV3, Noah, WW3), 2-tiered SST + NSST, atmos-land (25km, 64 vertical levels); 31-year (1989-2020) reforecast: IC from FV3 reanalysis (CFSR) after (before) 2000.
 Real-time: 31 members, 16 days lead time from 06/12/18UTC, 35 days lead time from 00UTC, EnKF initial perturbations, stochastic physics.
- GEFSv13:
 - Implementation Q1FY26, atmos-land-ocean-sea ice-waves (possibly aerosols) (FV3, Noah-MP, MOM6, CICE6, WW3, GOCART), atmos-land-aerosols (25km, 127 vertical levels), ocean-sea ice (0.25-deg), unstructured waves; 31-year (1994-2023) reforecast: IC from replay to ERA5, ORAS5, snow DA. Real-time: 31 members, 16 days lead time from 06/12/18UTC, 45 days lead time from 00UTC, coupled GDAS initial perturbations, stochastic physics.
 - Trade Space: Ensemble Size vs Resolution:
 - ~1.3M core hours per 45-day forecast with 127 vertical levels, 0.25-deg ocean/sea ice and

- Challenges:
 - **Test & evaluation**: currently 3 year period, 11-member ensemble, insufficient to represent full uncertainties
 - **Reanalysis & reforecast**: 30 year reforecast requires model been frozen about 1 year earlier
 - **Upgrade cadence:** R&D, stakeholder needs and feedbacks
- **Opportunities:** Cloud HPC, UFS community modeling, AI

NATIONAL WEATHER SERVICE

Building a Weather-Ready Nation // 15

12

四

ž

औ

RS

Climate Forecast System (CFS) and Seasonal Forecast System (SFS)

• CFSv2:

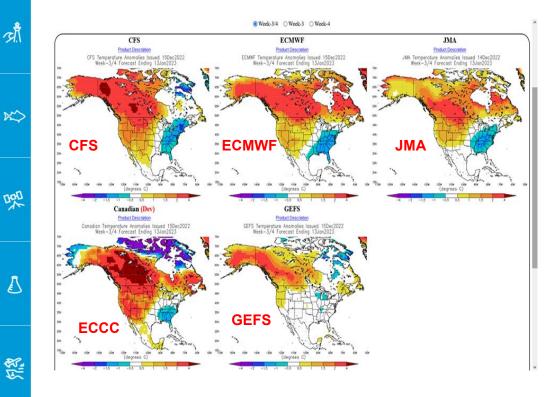
औ

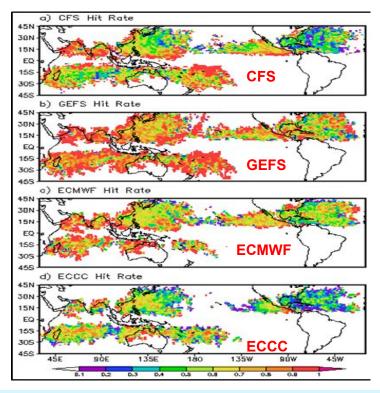
R

四

The second

- Implementation 2011, atmos-land-ocean-sea ice (Spectral GFS +Noah, MOM4, SIS), atmos-land (100km, 64 vertical levels), ocean-sea ice (0.5-deg); 29-year (1981-2010) reanalysis & reforecast: Climate Forecast System Reanalysis (CFSR), 4 members, every 5 days, lead times out to 9 months; Real-time: IC from CFSR, 4 members, every day.
- SFSv1:
 - Implementation TBD, atmos-land-ocean-sea ice (possibly waves, aerosol) (FV3+Noah-MP, MOM6, CICE6, possibly WW3, GOCART), atmos-land (25-50 km, 127 vertical levels), ocean-sea ice (0.25-deg), 11-100 members, lead times out to 12 months, initialization 1x or 2x per month (e.g. on the 1st and 15th), cycled EnKF perturbations, physics tendency perturbations, physics parameterization perturbations, 40+ years coupled reanalysis & reforecast
 - Trade Space: Ensemble Size vs Resolution
 - ~4M core hours per 12 month forecasts with 127 vertical levels, 0.25-deg ocean/sea ice and:

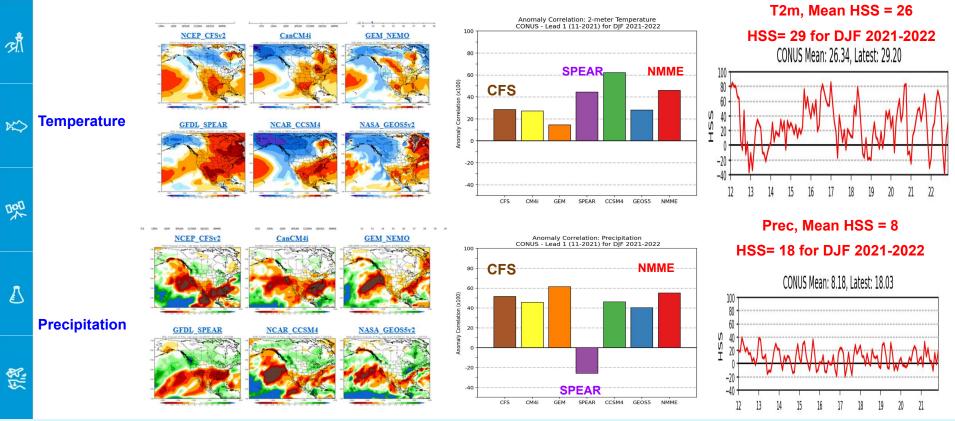

- Challenges:
 - Test & Evaluation: 20+ years period, 11-member ensemble, to establish a baseline skill
 - **Earth modeling complexity**: represent physical processes, cross-component interactions, and reduce model biases
 - Reanalysis & reforecast: represent initial state in ocean, sea ice and land, 40+ years coupled reanalysis & reforecast
- **Opportunities:** Cloud HPC, UFS community modeling, AI


GEFSv12 and CFSv2: Probabilistic IDSS for Weeks 2-4 Forecast

Week 3-4 Temperature Forecast

ž

Week 2 Tropical Cyclone Hit Rate



Building a Weather-Ready Nation // 17

NATIONAL WEATHER SERVICE

CFSv2: Probabilistic IDSS for Monthly and Seasonal Forecast

Seasonal Mean Forecast for DJF, 1 Month Lead

NATIONAL WEATHER SERVICE

ž