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Unmanned Aerial Systems (UASs) 2

NCAR

Small size/weight of UASs
makes them more susceptible to
turbulence variability & b e i
magnitude [expected low-altitude g e R -
operations: z = 50 — 150 m] |

>10kg; >2m

What is the relevant range of EDR
when forecasting turbulence for
UAS applications?
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LLT implications for general aviation 2

NCAR

Wake vortices persist longer in
weak-turbulence background
environments

Require accurate LLT forecasting
& have a direct impact in take-off
and landing maneuvers
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GTG: “turbulence indices” + “observations

NCAR
EDR=0.1,0.2,0.5
Each turbulence index D; is rescaled to an EDR 16 grrrmmrer NS .
assuming a log-normal distribution of EDR : ' ]
10" £ 4
log D" = a+ blog D; . _
where “a” and “b” are chosen to give best fit to & :
expected log-normal distribution at upper levels E
and depend on climatology 10*
UAL B e e ) ——
o Which indices are appropriate at low levels? 0° 10

LLT mechanisms are different: do we need to modify GTG?
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Graphical Turbulence Guidance (GTG)
Sharman & Pearson (JAMC 2017)
Pearson & Sharman (JAMC 2017)
Munoz-Esparza & Sharman (JAMC 2018)
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Eddy Dissipation Rate (EDR)




EDR observations at low-levels 2
NCAR
The eXperimental Planetary boundary layer Instrumentation Assessment campaign (2015)

(Lundquist et al. BAMS 2017) -> high-frequency sonic anemometer data
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Automated algorithm developed to derive EDRs from sonic anemometers
BAO tower Large dataset generated!!! (3 months, 7 heights, ~1.5Million EDRS)

Munoz-Esparza, Sharman, Lundquist (MWR 2018)
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Insights into low-level turbulence =

NCAR
Statistical behavior
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Strong diurnal and height dependence
e Daytime turbulence: Weibull distribution

* Nighttime turbulence: log-normal distribution
(same as upper-levels)
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New GTG LLT algorithm & calibration =

Extended statistical re-mapping approach from GTG to ABL stability NEAR
(2 distributions: log-normal/Weibull) dependence for low-level EDR forecasting

InD*=a+blnD

a = (In&'/3) — b(In D)
B SD[ln 81/3]

SD[In D]
1-year long calibration using the High-Resolution Rapid Refresh (HRRR, 3 km)
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f(nx) = — e 207 (lognormal)
o

Optimization based on Mean Absolute Percentage Error (MAPE) minimization

¢ Fitted bins
» Excluded bins
——Best fit
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Munoz-Esparza & Sharman (JAMC 2018)
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GTG LLT validation & comparison to GTG v3Yl)

NCAR
Improved ABL predictions based on specific “indices” and observation-derived
understanding of climatological behavior of turbulence dissipation rate in the ABL

Somc anemometer: 2z = 5 m. GTG z = 10 + 0.2 m

Observations
-1 ——GTG LLT HRRR
M ———GTG RAP

SOIllC anemometer: z = 100 m, GTG 2 = 80 + 1.6 m

SOIHC anemometer: z = 150 m, GTG: z = 165 £+ 3.0 m
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Sonic anemometer: z = 300 m, GTG: z = 280 +45m
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GTG LLT validation & comparison to GTG v33ll)

NCAR
CAT error decreased by a factor of 2 (MAPE = 55%) and ~20% increased

probability of detection of typical low and high EDR values
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GTG LLT validation & comparison to GTG v3

NCAR
= |mproved ABL predictions based on specific “indices” and observation-derived

understanding of climatological behavior of EDR in the ABL
" |mplemented in operational G-GTG based on FV3 (code already delivered)
= GTG LLT will be part of GTG v4 (additionally supporting HRRR and RAP)

Observations

——GTG LLT HRRR

o Sonic anemometer: > = 5 m, GTG: z = 10 £ 0.2 m ——GTG RAP
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Overall diurnal evolution of ABL turbulence is correctly captured
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However... N

NCAR
Significant variability is present at smaller spatiotemporal scales [s — min]

Observations
¢ GTG LLT HRRR
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Toward eddy-resolving forecasts =

NCAR

Operational NWP forecasts are too coarse to capture the required

turbulent scales of interest...

5h-fcst vertical velocity, w [m s-1], z = 100 m

(HRRR, A = 3 km; 14 LT)
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5h-fcst vertical velocity, w [m s71], z = 100 m
(WRF mesoLES, A =25m; 14 LT)
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Toward eddy-resolving forecasts 2

NCAR
Dynamic downscaling from the RAP fcst (~13.2km) to nested 1 km

mesoscale and 100m/25m LES [1200 x 1200 x 80 grid points]
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Toward eddy-resolving forecasts

Contours:
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Probabilistic turbulence forecasts 2

NCAR

Daytime portion (8am — 6 pm) of 10 days during the XPIA campaign with coupled

WRF meso-LES [100 h total]
— Observations

| Turbulence dissipation
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: S 30-s temporal rate |
\ of change
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Both probability of EDR and its temporal rate of change are well reproduced by the

eddy-resolving forecasts!
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Near-future directions: urban environment
NCAR

Significant interest on urban scenarios

= High resolutions and building-resolving capabilities are required

= Accelerated GPU-LES to enable real-time forecasting applications

Var: Vorticity
Units: m/s

e NCAR-RAL team is developing an
3;2;20 N ) /| accelerated GPU-LES code: “FastEddy”
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(JAMC 2018, submitted) —
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Conclusions N
NCAR
v We have enhanced GTG with the development of a LLT-specific

algorithm — accurately represents diurnal evolution of EDR in the
ABL

v GTG LLT forecasting in the ABL has the potential to benefit: UAVS,
wake turbulence ...

v' Meter-scale coupled WRF mesoscale-LES realistically reproduces
turbulence in the ABL [dissipation rate validated through
comparison to sonic anemometer data] - need to move toward
“probabilistic” LES-scale forecasts

v NCAR’s GPU-accelerated LES model FastEddy will enable a path
toward high-resolution eddy-resolving forecasts in the near term
[including building-resolving urban capabilities]
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Thanks for your attention!!!

“Improvements in Low Level Turbulence (LLT)
forecasting for UAVs”
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