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Need of multimodel streamflow forecasting!
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We assemble, implement and verify a
regional hydrological ensemble prediction
system [RHEPS]



RHEPS
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Analysis/Simulation

Model Initialization

Hourly observations

Forecast Duration

Hourly
[2002-2017]

Meteorological/Climatological Forcing
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Applications

Real-time streamflow
information

Drought prediction,
Flood (inundation) forecast Water quality prediction &
Agricultural planning

Flood hazard and risk
assessment

RHEPS uses HPC system from Penn State and also tested to run in the cloud




Are multimodel ensemble streamflow
forecasts more skillful than
single-model forecasts?



Hydrological models considered

d HL-RDHM (distributed, conceptual)

d Continuous API (lumped, conceptual)
- Operational forecasts from NOAA’s MARFC

1 WRF-Hydro (distributed, land surface)

- Employs land surface model NoahMP

- Gridded wave diffusion routing

- 1x1 km? resolution

- Dynamically Dimensioned Search (DDS) used
for calibration
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Hydrometeorological ensemble forcing

Single model ensemble streamflow forecasts

Bias correction with QR

/|

N4

CRPSS verification .
Data transformation to

normal space using NQT

Inverse NQT

EM algorithm l

Multimodel ensemble streamflow forecasts

Conditional mutual information
CMI(O:F,| F,)= MI(O;(F,.F,))- MI(O;F,)
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Four nested subbasins are chosen in the
Middle Atlantic region

dSix years of multimodel
forecast data are used for
verification (2004-2009,
warm season only).

d Verification is performed
conditioned on forecast
lead times (1-7 days) and
basin scale.
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API and HL-RDHM tend to outperform
WRF-Hydro for raw forecasts

Raw forecasts
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All the models have comparable skill after
QR-postprocessing

QR-postprocessed forecasts
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Multimodel forecasts have higher skill
than the best single model forecast
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Are any skill improvements in
multimodel forecasting dominated by

model diversity or the addition of new
ensemble members?

PENNSTATE
| i



Conditional mutual information (CMI) is
used as a skill measure

F, represents the single model forecast

F, represents the multimodel forecasts of the remaining
models

CMI(O; F;[F1) = MI(O; (F4,F3)) — MI(O; Fy)
\ J

{

Decrease 1in uncertainty due
to adding a second forecast
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CMI can be expressed as a function of
partial correlation

1
CMI = —5108(1 ~ P52)1)

Upper bound on skill improvement due to adding new
ensemble member from same model:

E
< 2

Poat = [ + B (B, + D

For E,=3 and E,=6
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Hydrological model diversity enhances
forecast skill more than the ensemble size
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It is concluded that..

d Multimodel ensembles are more skillful compared to
the best single model forecasts.

d Each single model contributes additional information
to enhance forecast skill.

d Skill enhancements obtained by multimodel forecasts
are found to be dominated by model diversity, rather
than by increased ensemble size alone.
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Thank you for yeur attention!

Contact:
Sanjib Sharma sanjibsharma66@gmail.com
Alfonso Mejia amejia@engr.psu.edu
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