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Background Knowledge
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It's an indisputable fact that global warming is causing severe climate change.

Temperature

Precipitation

• extreme precipitation

• drought 

ref.: https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202213

Taiwan complex terrains
unique geographical location

 Summer (Jul-Sep)

convectional, typhoon rainfall

 Winter (Oct-Apr)

frontal rainfall (cold front)

 Mei-Yu (May-Jun)

frontal rainfall (stationary front)

Seasonal characteristics of rainfall in Taiwan
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future

cross-field cooperation

environment resilient

past

whywhat

present

EPS

how

livestock industry in Taiwan

It's possible to harvest and process 

the grass into hay when its yield is 

high in the summer.

ref.: https://eng.moa.gov.tw/ws.php?id=9162

Predicament

Goal

Taiwan is suitable for cultivating 

tropical grass, but during the winter, 

it is prone to experiencing slow 

growth. 

Challenge

In the process of preparing hay, 

excessive rainfall can lead to 

mold formation on the grass.

Supported domestic production of grass 

and silages to increase domestic fodder 

supply and quality

Taiwan's major grass import countries 

also face extreme drought conditions 

leading to insufficient grass yields.

Predicament

Goal (challenge)

Purpose
Assist in weather-related 

behavioral decision-making

Forecasts of 

Consecutive Days 

Without Measurable 

Rainfall 

Probabilistic Forecasts

(calibrated)

Evaluation 



9TH NOAA ENSEMBLE USERS WORKSHOP

Methodology
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Analog Post-processing (AP)

Current

forecast
pattern matching

historical forecast 1

historical forecast 2

historical forecast 3

historical forecast 20

……

historical observation 1

historical observation 2

historical observation 3

historical observation 20

……

calibrated 

ensemble members

fct-to-obs

correspondence

Statistical Post-Processing

for calibrating

∆𝐭𝐝 𝒙𝒕, 𝒙𝒕𝒅 =
𝟏

𝑳
 
𝒍=𝟏

𝑳

 𝒙𝒍,𝒕 −  𝒙𝒍,𝒕𝒅 𝟐 +
𝟏

𝑳
 
𝒍=𝟏

𝑳

𝒔𝒍,𝒕 − 𝒔𝒍,𝒕𝒅 𝟐

variable: accumulated rainfall

 𝑥 : ensemble mean 𝑠 ∶ ensemble spread

Similarity (Schefzik 2016)

single forecast

ensemble mean

｜
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Observation & Forecast Data

Data source
Spatial 

resolution
Update frequency

Forecast time 

length

(output frequency)

Observation

precipitation grid 

analysis 
(produced by CWB)

1 km daily

Forecast

GEFS v12

Re-forecast 
( 10 members 

without control run 

on Wednesday)

0.5 deg
4 times 

(00/06/12/18 UTC)

0-840 hour

( 6-hourly )

Variable: precipitation Verification period: Jan 2000 - Dec 2019

5probabilistic forecast

threshold of 

consecutive days without measurable rainfall
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Results
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• ensemble quality of EPS

• reliability and discrimination of probabilistic forecast

• forecast value
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d01-d05 d08-d12 d15-d19 d22-d26

Lead Time

Summer
Winter
Mei-Yu
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Results ｜ensemble quality variable: 5-day accumulative rainfall

RAW ens AP ens

lead time: d01-d05

season: winter

lead time: d01-d05

season: winter

The AP ensemble improve the bias and 

dispersion of the raw ensemble.

Rank histogram — is the most common approach to evaluating 

whether a collection of ensemble forecasts for a scalar predictand

satisfies the consistency condition.

Rank bias — is the sum of the difference from the frequency of 

actual rank and the ideal situation

RAW ens

AP ens
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Results ｜reliability of probabilistic forecasts

Summer Winter Mei-Yu

Reliability diagram —

plots the observed 

frequency against the 

forecast probability

Reliability —

agreement between 

forecast probability 

and mean observed 

frequency

The AP probabilistic 

forecasts have good 

reliability.

variable: 5-day accumulative rainfall

Threshold: < 3mm/5days

d01-d05 d08-d12 d15-d19 d22-d26

Resolution —

ability of the forecast 

to resolve the set of 

sample events into 

subsets with 

characteristically 

different outcomes

d01-d05 d08-d12 d15-d19 d22-d26

lead time: d01-d05 lead time: d01-d05 lead time: d01-d05
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d01-d05 d08-d12 d15-d19 d22-d26

Lead Time
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Results ｜discrimination of probabilistic forecasts

Summer Winter

Mei-Yu

ROC — plots hit rate (HR) 

vs false alarm rate (FAR), 

using a set of increasing 

probability thresholds to 

make the yes/no decision

The AP probabilistic 

forecasts have good 

discrimination.

lead time: d01-d05 lead time: d01-d05

lead time: d01-d05

variable: 5-day accumulative rainfall

Threshold: < 3mm/5days
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Results ｜relative Economic Value
variable: 7-day accumulative rainfall

Threshold: < 5mm/7days

Season: winter

use AP ensemble

use climatology

use Raw ensemble

d01-d07 d22-d28
Lead Time

d08-d14 d15-d21

RAW
AP

climatology
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relative Economic Value — is a skill score of expected 

expense, with climatology as the reference forecast.

The AP ensembles provide higher economic value 

for users with a wider spectrum of cost/loss ratio 

as compared to the raw forecast.
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Summary

(1) The AP ensemble improve the bias and dispersion of the raw ensemble

(2) The AP probabilistic forecasts

• have good reliability and discrimination up to four weeks of lead time

• provide higher economic value for a wider range of users as compared to the raw forecast.

Success rate of hay production increased from 60% to 90%, 

increasing hay production by more than 33%.

The purpose of this study is to generate calibrated probabilistic forecasts of consecutive days 

without measurable rainfall using Analog Post-processing (AP) technique:

With any given threshold, 

the probability forecasts 

can be derived separately

building resilience through better water managementFuture Opportunities

calibrated

probabilistic 

forecast

forecast 

information
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Thank you for listening !
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