Evaluation of Probabilistic Forecasts of Consecutive Days Without Measurable Rainfall **Over Taiwan**

Shih-Chun Chou¹, Hui-Ling Chang¹, Zoltan Toth², Chih-Yung Feng³, Han-Fang Lin³, Jing-Shan Hong¹, Meng-Shih Chen¹

¹Central Weather Bureau, Taipei, Taiwan

²Global Systems Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado

³Manysplended Infotech Ltd, Taipei, Taiwan

Background Knowledge

It's an indisputable fact that global warming is causing severe climate change.

Temperature

Precipitation

- extreme precipitation
- drought

complex terrains unique geographical location

Seasonal characteristics of rainfall in Taiwan

- Summer (Jul-Sep)
 convectional, typhoon rainfall
- Winter (Oct-Apr) frontal rainfall (cold front)
- Mei-Yu (May-Jun) frontal rainfall (stationary front)

ref.: https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202213

why what how present future past livestock industry in Taiwan **EPS Predicament** Purpose

Taiwan is suitable for cultivating tropical grass, but during the winter, it is prone to experiencing slow growth.

Goal

It's possible to harvest and process the grass into hay when its yield is high in the summer.

Challenge

In the process of preparing hay, excessive rainfall can lead to mold formation on the grass.

ref.: https://eng.moa.gov.tw/ws.php?id=9162

Assist in weather-related behavioral decision-making

Forecasts of Consecutive Days Without Measurable Rainfall Ϋ́ **Probabilistic Forecasts** (calibrated)

∜

Evaluation

Evaluation of Probabilistic Forecasts of Consecutive Days Without Measurable Rainfall **Over Taiwan**

Predicament

Taiwan's major grass import countries also face extreme drought conditions leading to insufficient grass yields.

Goal (challenge)

Supported domestic production of grass and silages to increase domestic fodder supply and quality

Observation & Forecast Data

Variable: precipitation

Verification period: Jan 2000 - Dec 2019

	Data source	Spatial resolution	Update frequency	Forecast time length (output frequency)
Observation	precipitation grid analysis (produced by CWB)	1 km	daily	
Forecast	GEFS v12 Re-forecast (10 members without control run on Wednesday)	0.5 deg	4 times (00/06/12/18 UTC)	0-840 hour (6-hourly)
		<u> </u>		

threshold of

consecutive days without measurable rainfall

probabilistic forecast

Results

- <u>ensemble quality</u> of EPS
- <u>reliability</u> and <u>discrimination</u> of probabilistic forecast
- forecast <u>value</u>

Results ensemble quality va

variable: 5-day accumulative rainfall

variable: 5-day accumulative rainfall Threshold: < 3mm/5days

R

Winter

RAW, ROC area=0.81

0.8 0.9 1.0

AP. ROC area=0.87

lead time: d01-d05

1.0

0.9 0.8

0.7

Hit Rate ^{0.0} ^{0.0}

0.3

0.2

0.1

0.0 0.1 0.2

variable: 5-day accumulative rainfall Threshold: < 3mm/5days

ROC — plots hit rate (HR) vs false alarm rate (FAR), using a set of increasing probability thresholds to make the yes/no decision

0.3 0.4 0.5 0.6 0.7

False Alarm Rate

9

Results <u>relative Economic Value</u>

1.0

0.9

0.8

Aalue 0.7

Sim 0.5 0.4 0.3

0.2

0.1

0.0

variable: 7-day accumulative rainfall Threshold: < 5mm/7days Season: winter

relative Economic Value — *is a skill score of expected expense, with climatology as the reference forecast.*

The AP ensembles provide **higher** economic value for users with a wider spectrum of cost/loss ratio as compared to the raw forecast.

Summary

The purpose of this study is to generate **calibrated** probabilistic forecasts of consecutive days without measurable rainfall using Analog Post-processing (**AP**) technique:

(1) The AP ensemble improve the bias and dispersion of the raw ensemble

- (2) The AP probabilistic forecasts
 - have good reliability and discrimination up to four weeks of lead time
 - provide higher economic value for a wider range of users as compared to the raw forecast.

Success rate of hay production increased from 60% to 90%, increasing hay production by more than 33%.

Future Opportunities 💧

With any given threshold, the probability forecasts can be derived separately calibrated probabilistic forecast

forecast information

building resilience through better water management

References

- Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. *Q. J. R. Meteorol. Soc.*, **125**, 2887–2908.
- Chang, H. L., S. C. Yang, H. L. Yuan, P. L. Lin and Y. C. Liou, 2015: Analysis of the relative operating characteristic and economic value using the LAPS ensemble prediction system in Taiwan. *Mon. Wea. Rev.*, **143**, 1833–1848.
- Chou, S. C., H. L. Chang, K. J. Chen, and J. S. Hong (2021, Aug). Forecast Evaluation and Economic Value Analysis of the Probabilistic Forecasts of 100-meter Wind Speed from WRF Ensemble Prediction System over Taiwan Area. *18th Asia Oceania Geosciences Society (AOGS) virtual meeting*.
- Finley, J.P., 1884: Tornado predictions. Amer. Meteor. J., 1, 85-88.
- Murphy, A. H., and M.Ehrendorfer, 1987: On the relationship between the accuracy and value of forecasts in the cost–loss ratio situation. *Wea. Forecasting*, **2**, 243–251.
- Richardson, D. S., 2000: Skill and relative economic value of the ECMWF ensemble prediction system. *Quart. J. Roy. Meteor. Soc.*, **126**, 649–667.
- Schefzik, R., 2016: A similarity-based implementation of the Schaake shuffle. Mon. Weather Rev., 144, 1909–1921.
- Toth, Z., O. Talagrand, and Y. Zhu, 2006: The attributes of forecast systems: A general framework for the evaluation and calibration of weather forecasts. *Predictability of Weather and Climate: From Theory to Practice*, T. Palmer and R. Hagedorn, Eds., Cambridge University Press, 584–595.
- Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Cambridge Press, 547 pp.
 - _____, 2001: A skill score based on economic value for probability forecasts. *Meteor. Appl.*, **8**, 209-219.
 - ____, 2011: *Statistical Methods in the Atmospheric Sciences*. 3rd ed. Academic Press, 704 pp.

Zhu, Y., Z.Toth, R.Wobus, D. S.Richardson, and K.Mylne, 2002: The economic value of ensemble-based weather forecasts. Bull. Amer. Meteor. Soc., 83, 73-8.

LZ

9TH NOAA ENSEMBLE USERS WORKSHOP

Thank you for listening !

