

NATIONAL WEATHER SERVICE

Including Sea Ice and Ocean Models in GEFSv13

Neil Barton¹, Jiande Wang², Philip Pegion³, Sulagna Ray⁴, Guillaume Vernieres¹, Yuejian Zhu¹, Denise Worthen², Jun Wang¹, Avichal Mehra¹

¹NOAA/ NWS/ NCEP/ EMC, ²Lynker at NOAA/ NWS/ NCEP/ EMC, ³NOAA / OAR / PSL, ⁴SAIC at NOAA/ NWS/ NCEP/ EMC

2023 NOAA Ensemble Users Workshop, Aug 22th, 2023

NCEP Global Ensemble Forecast System (Configuration)

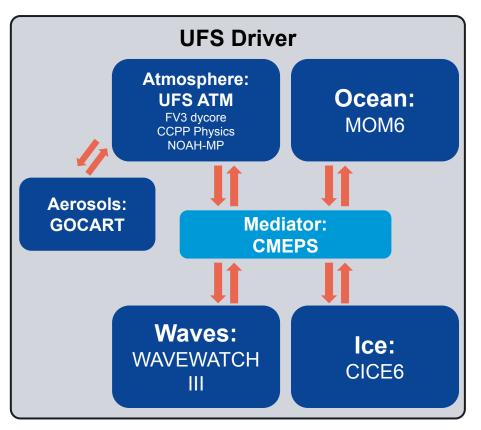
Components		V12 (Oct. 2020)	V13 (Q2FY25)
Atmos	Dynamics	FV3 (Finite-Vol Cubed-Sphere) GFSv15	FV3 (Finite-Vol Cubed-Sphere) GFSv17
	Physics	saSAS, GFDL-MP, K-EDMF, oroGWD	saSAS, Thompson-MP, sa-TKE-EDMF, uGWD
	Initial perturbation	EnKF f06 (previous cycle)	EnKF f00 (early cycle)
	Model uncertainty	5-scale SPPT and SKEB	5-scale SPPT, SKEB, SPP, CA
	Boundary (ocean surface)	NSST + 2-tiered SST	NSST
	Resolutions	C384L64 (25km)	C384L127 (25km)
Land	Model	NOAH-LSM	NOAH-MP
	Initial perturbation	N/A	Soil moisture
Ocean	Model	N/A	MOM6 (0.25°L75)
	Initial perturbation	N/A	SOCA-Ens
	Model uncertainty	N/A	5-scale oSPPT and ePBL
Ice	Model	N/A	CICE6 (0.25°)
	Initial condition	N/A	SOCA-Ens
Wave	Model	WW3 (one way)	WW3 (2-way) (0.25° lat/lon grid)
Aerosol	Model	GOCART (one way)	GOCART (2-way)

쏦

NCEP Global Ensemble Forecast System (Configuration)

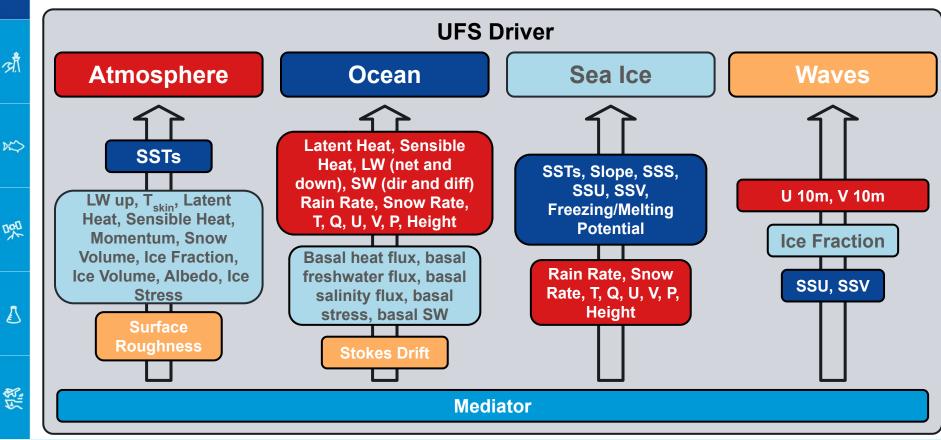
Components		V12 (Oct. 2020)	V13 (Q2FY25)
Atmos			
Land			
Ocean	Model	N/A	MOM6 (0.25°L75)
	Initial perturbation	N/A	SOCA-Ens
	Model uncertainty	N/A	5-scale oSPPT and ePBL
Ice	Model	N/A	CICE6 (0.25°)
	Initial condition	N/A	SOCA-Ens
Wave			
Aerosol			

CICE and MOM6 in GEFS/UFS



CICE6

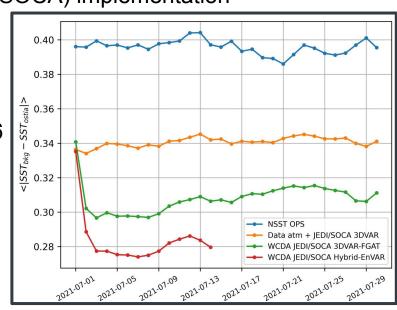
- Department of Energy Based Model
 - Los Alamos National Laboratory (LANL)
- CICE consortium
 - DOE, NSF, US Naval Research Lab, NASA, NOAA, DMI, Environment Canada, iPAN
- ¼ degree tripolar grid (same as ocean)
- B-grid
- 5 thickness categories, 7 ice layers, 1 snow layer
- Mushy thermodynamics


MOM6

- Developed at the GFDL
- ¼ degree tripolar grid (same as sea ice)
- C-grid
- 75 hybrid levels
- Flexible Modeling System (FMS)

溢

Coupling in GEFS/UFS

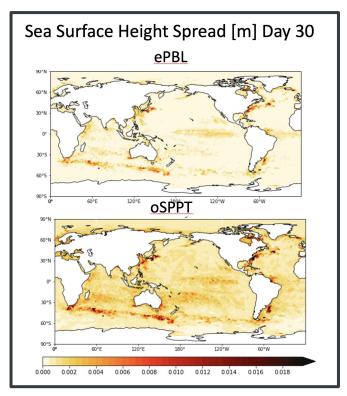


Planned Ocean/Sea Ice DA for GEFSv13

- Weakly coupled DA with atmosphere
- Strongly coupled DA between the Ocean and Sea Ice
- JEDI Sea-ice Ocean and Coupled Analysis (SOCA) implementation
- Sea Ice Control Variables:
 - concentration, thickness, snow depth
- Ocean Control Variables:
 - T, S, U, V, SSH
- IAU for MOM6 and direct insertion for CICE6
- Hybrid 3DEnVAR with LETKF perturbations
 - Initialization for GEFS members
 - Early cycle (GDAS)

POCs for Ocean Ice DA work: Guillaume Vernieres (EMC) and Catherine Thomas (EMC)

Planned Ocean/Sea Ice Forecast Perturbations for GEFSv13


MOM6:

Following Juricke et al. 2017

- oSPPT: perturbed temperature, salinity and layer thickness tendencies from vertical parameterizations
- ePBL: perturbed KE generation and dissipation rates in energetic PBL parameterization.

CICE6:

No perturbations

POCs for Ocean Ice DA work: Philip Pegion (PSL)

Preliminary Ocean Results

郊

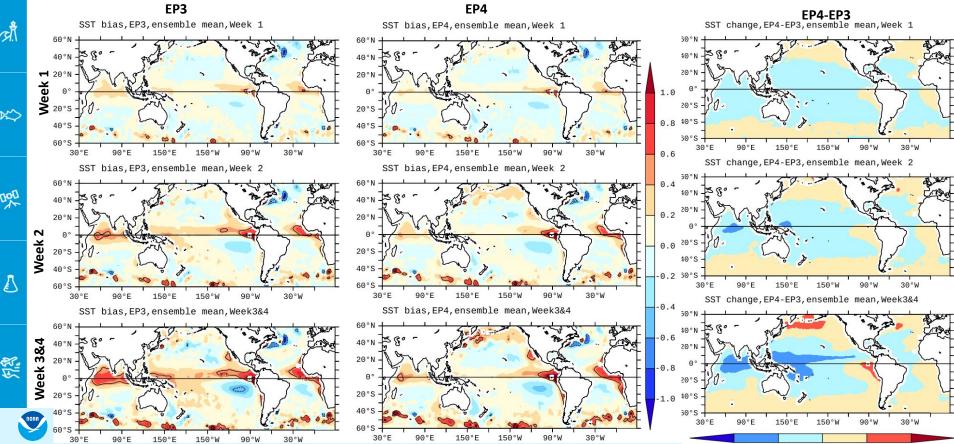
Ensemble Prototype 4:

- Oct. 2017 Sept. 2019: 2 years
- Once per week: Wednesday 00UTC
- 11 members
- 35 days forecasts

哭

Initial Conditions:

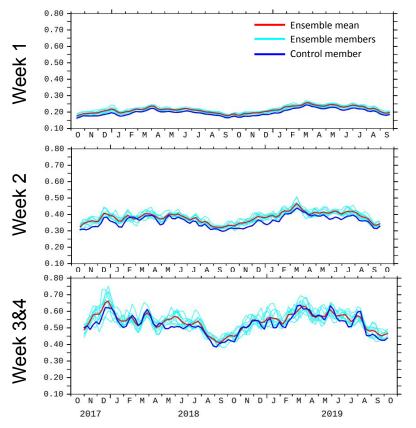
- FV3: GEFS Reanalysis
- CICE: CPC analysis (CSIS) (<u>Liu et al. 2019</u>)
- MOM6: ORA5 analysis with perturbations

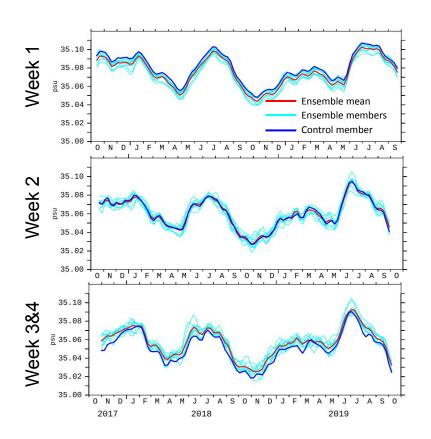

POCs for Ocean Diagnostics: Sulagna Ray (SAIC at EMC)

ž

SST biases in Ensemble Mean

- EP4 has cooler tropics than EP3: reduced warm bias
- EP4 has a slightly warmer bias along the coasts compared to EP3: increased warm bias




Mean Squared Error in SST (40°S to 40°N)

- **Magnitude of forecast error** increases from Week 1 to **Week 3&4**
- **Control MSE is clearly lower** in Week 1, and 2, and in general in Week 3&4 forecast compared to ensemble mean

Global Mean SSS

- Control member is saltier than ensemble mean in Week 1 transitioning to being more fresher than ensemble mean by Week 3&4
- In Week 1 and Week 3&4 the control tends to be an outlier

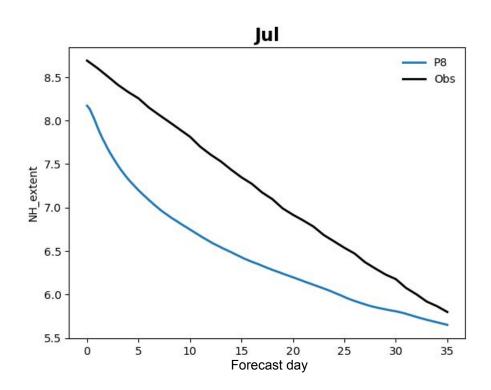
Preliminary Sea Ice Results

Prototype 8:

- April 2011 to March 2018
- Every 1st and 15th day
- 35 Day Forecasts

Initial Conditions:

- FV3: GEFS Reanalysis
- CICE: CPC analysis (CSIS) (<u>Liu et al. 2019</u>)
- MOM6: CPC 3DVAR

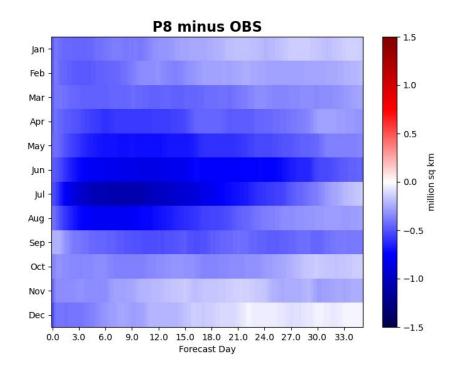

POCs for Ocean Diagnostics: Neil Barton (EMC)

K\$

NH Sea Ice Extent

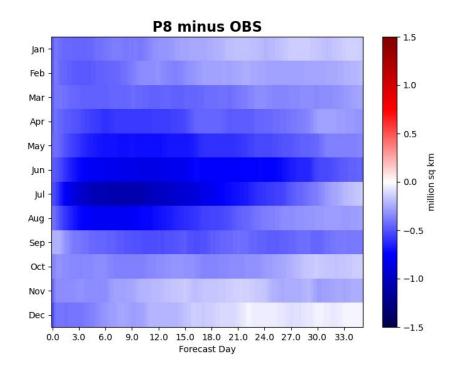
- Sea Ice Extent
 - Area with > 15% seaice

NH Sea Ice Extent



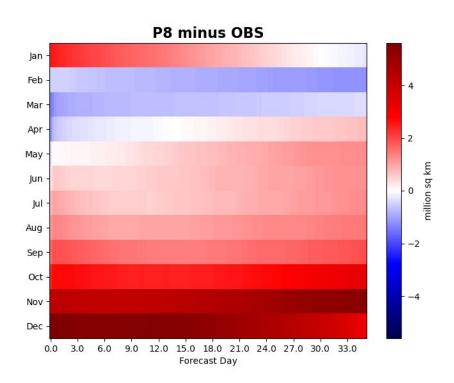
- Negative bias in Sea Ice extent
- Negative bias in initial conditions
- Greater negative biases
 during summer melt months
 More rapid melt

NH Sea Ice Extent



- Negative bias in Sea Ice extent
- Negative bias in initial conditions
- Greater negative biases
 during summer melt months
 More rapid melt

SH Sea Ice Extent



- SH sea ice extent biases are larger than NH biases.
- P8 SH sea ice extent is mostly greater than observations except during seasons melt period.
- Larger differences in initial sea ice compared to observations when comparing to NH

Comparison to CFSv2

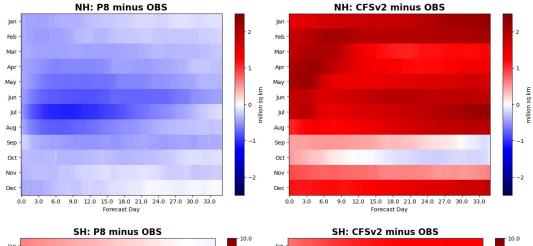
Feb

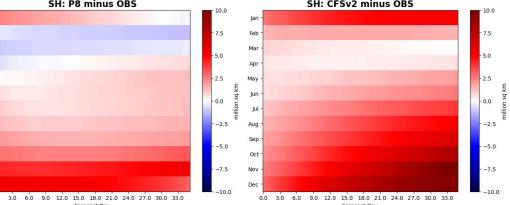
Apr

May

lun

Aua


Sep


Oct

Nov

- Raw, uncorrected model results
- P8 sea ice extent biases are much smaller than CFSv2 biases in Northern and Southern Hemisphere
- Recalibration
 needed for biases
 corrections for S2S
 UFS runs

Conclusions

- GEFSv13 will include MOM6 and CIC6 on a 0.25 degree tripole grid
- DA
 - Ocean and sea ice DA is weakly coupled with atmosphere
 - Strongly coupled between ocean and sea ice
 - 3DEnVAR with 3D LETKF from GDAS to initialize GEFS
- Forecast perturbations:
 - Ocean: oSPPT, ePBL
 - Sea Ice: none
- Initial examination of ocean and sea ice results is reasonable
 - Sea ice extent results have smaller biases than CFSv2
- Challenges:
 - Testing has all occurred with initial conditions outside of DA. Results will and have varied depending on ICs.
 - Ocean and sea ice diagnostics being developed
- Longer Term Updates/testing:
 - o CICE6: C-grid and parameterization testing (Meltponds, landfast ice)
 - MOM6: use of OM5 settings when available

Thank You!

neil.barton@noaa.gov

