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PREAMBLE

• Ensembles are ubiquitous in numerical 
weather prediction 

– Estimated 75% of cpu, and significant 
developmental efforts devoted to weather & 
climate ensemble forecasting

• Probabilistic and other types of products 
derived from ensembles

– Used widely

– With clear value
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MOTIVATION

• We  strongly believe that

– Conveying expected forecast skill is crucial

• Probabilistic or other formats needed

• The question we pose:

– What is the best way to make probabilistic 
forecasts?

• With or without ensembles?
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ATTRIBUTES OF FORECAST PERFORMANCE
• Two (and only two) independent attributes

– Resolution (Murphy & Daan 1985), or Informativeness (Krzysztofowicz 1992)
– Reliability (Murphy & Daan 1985), or Calibration (Krzysztofowicz & Sigrest 

1999)

• Metrics to assess attributes
– Information measured by single common metric, irrespective of form of 

forecast (Toth et al. 2005) = >
• Can compare skill of forecasts in any form

– In contrast, metrics of reliability is dependent on form of forecast
• Reliability of single-, multi-value (ensemble), probabilistic, etc forecasts

– Necessarily measured by different metrics

• RMSE, MAE, RPS, CRPS, and other commonly used metrics
– Confound 2 independent attributes with various undetermined weights
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MAIN OBJECTIVES

• Assess and compare ensemble performance 
with that of an unperturbed (”control”) forecast

– In terms of 2 attributes:

• Forecast information & statistical reliability

• Explore if ensemble may have unique virtues?

– Missed by two attributes

• Explain well-known results w confounded metrics

– In terms of two attributes
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INFORMATION AND NOISE IN FORECASTS

• Information is direct metric of 
forecast performance
– Only function of what is well 

predicted
– Error is also function of variance 

missed by forecast
• For forecast systems with realistic 

variance
– Info equivalent to correlation
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• Decomposition of forecast anomaly along & 
orthogonal to observed anomaly (Toth et al. 2023)
– Information variance – What matches reality
– Noise variance – What is different from reality



INFORMATION IN CONTROL & ENSEMBLE FCSTS
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• Ensemble members and mean / 
median have lower information than 
control at all lead times 

• Forecasts are made for information 
about future weather
– Disappointing result

Control has more information & 
less noise than perturbed members

Mean filters out noise but inherits 
lower information from members

Variance orthogonal to observed anomaly
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OTHER FORECAST ATTRIBUTE - RELIABILITY

• Strong consensus in developer and user communities
– Ensembles are unreliable = >

• Ensembles & derived products must be
– Statistically post-processed before their use

• Probabilistic and other products can be readily generated 
from single control forecast via statistical means
– Eg, Delle Monache et al. 2013

• As ensembles 
– Have less information &
– Need statistical processing anyway

• No obvious benefit from dynamically generated ensembles?

Are we missing any unique value from ensembles?
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ENSEMBLE MEAN “MORE ACCURATE”

• Somewhat lower information 
compensated by efficient removal of 
nonlinearly saturated perturbations 
(noise) in mean

• We posit that noise removal in mean 
is conditioned not on “cases” but 
on scales?
– Hence may be reproducible by 

statistical methods
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• Yes, ensemble mean or median have 
much lower rms error, MAE, etc

• Error variance = 
1 – Information + Noise variance
– Mean has more info or less noise or both?



CASE-DEPENDENT FLUCTUATIONS

• Widely held belief
– It is case-dependent fluctuations in the distribution that make

• CRPS lower in ensemble- than in control-derived probabilistic 
forecasts (Roulston and Smith 2003, etc)

• CRPS is analogous to MAE – a measure of “accuracy” for 
probabilistic forecasts
– As error in mean, CRPS is lower

• Due to reduced noise in median of distribution
• And not because, but despite lower forecast information

• CRPS is not even affected by
– Case dependent fluctuations in shape of distribution

• It depends only on average of spread over the sample 
(Hersbach 2000)
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SPREAD – ERROR CORRELATION

• Correlation low – Only ~10% variance in error 
explained (e.g., Hopson 2014)

• No record of its use by anyone in literature?

• May be related to multinormal nature of 
distribution of natural and forecast states

– Toth et al. 1991a,b; Kleeman 2011
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TAKE-HOME MESSAGE

• Ensembles recreate the same information, 
albeit at a somewhat reduced level, already 
present in the control N times, while

• With painstaking accuracy, dynamically 
generate N new realizations of noise 
different from that in the control

A dubious enterprise, as far as we can tell
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WAY OUT?

• Redirect computational and developmental 
resources to

– Increase resolution of unperturbed forecast for

• Improved performance

• Use statistical methods to derive reliable 
probabilistic and any other products users 
need
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BACKGROUND
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WHAT IS BEHIND?
(Expectations about) ensembles based on experience in 1D
• All variability in same, single direction
• Reliable perturbations around state estimate

– Perturbation variance = Error variance 
• Mean of error variance in perturbed states double that in control

– Yet many (48%) members have error lower that that in control = >
• Reality encompassed by ensemble

Things work very differently in high dimensional space of atmospheric dynamics
• Variability equally distributed among all directions

– Unknown error in control lies in a single direction
• Random perturbations have negligible projection on error

– They lie in directions orthogonal to error = >
• Perturbations are dynamically irrelevant, add only random noise

– Reality is missed by cloud of ensemble
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REAL, PERFECT, SIMULATED ENSEMBLES

• Perturbations are statistically reliable
– Perturbation variance = Error variance

• Small / large parts of perturbation variance are
– Dynamically relevant / noise, respectively = >

• Ensemble cloud completely misses reality
– They constitute randomly reproducible noise
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• Ensemble members
– Blue dots

• Proxy for reality
– Black bars (180 cases)

• Plotted along (X) & 
orthogonal to error in 
control (Y)
– Both standardized by 

error in control

NCEP Operational 
500 hPa height 
12-hr ensemble

Perfect 
model/ensemble: 1 

member = Truth

Random draws 
from multinormal 

distribution



HOW MANY DEGREES OF FREEDOM (dof)?

• Error distribution from perfect 500 hPa height ensemble 
indistinguishable from
– Simulation with dof in 28-38 range

• Dof = 33 gives best fit for NH
• Dof = 50 for global domain

• Considering variance across all levels & variables
– Independent dof estimated to be in range of 150-200
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HOW IMPOSSIBLE BRACKETING IS?

Less than 10-40 chance with realistic-size ensembles
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PROLOGUE

• Ensembles as we know them today have been 
around for about ~35 yrs

• With Jie Feng, we have worked on this review 
for ~6 yrs

• I got to summarize in ~12 mins / slides

– 20 secs for each year of ensembles

– 2 mins / slides for each year of our study…
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Figure. 11. Same as Fig. 8a, except error variance 
of individual forecasts against the verifying 
analysis for the single case initialized at 12 UTC, 
30 Dec 2017. The three dashed curves represent 
the error in the best (bottom, blue), median 
(middle, black), and worst member (top, red) at 
each lead time separately. The blue and red solid 
curves show the error variance in the members 
best and worst at the 12-hr lead time, respectively. 
Light grey curves show the error variance of 
individual members.

Figure A. Schematic depicting the growth of 
noise (blue line, left axis) and the decrease 
of information variance (blue line, right axis) 
in a forecast characterized by logistically 
growing standardized error (black line). For 
further details, see text.
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Figure 8. NH (30º -65ºN) 500 hPa height perturbed forecast rms error evaluated against the verifying analysis 
(a) and a randomly selected member (b), standardized by the error in 0.5 - 15.5 (panel a) and 0 - 16 day 
(panel b) control forecasts, ranked from lowest to highest, and averaged over all 180 cases. The top and 
bottom of whiskers and boxes represent the average of the extreme sample point and 25 / 75% quantile 
values of the 20 and 19 ranked perturbed forecast error values in panels (a) and (b), respectively.

Figure 1. Schematic of statistical (a) vs. 
dynamical (b) forecast perturbation 
generation. In either case, initial perturbations 
(bottom ellipsoids) are centered on a 
reference initial condition (R, that can be 
either the truth in an ideal, or the control 
analysis and forecast in a realistic ensemble, 
vertical black line). Forecast perturbations 
(top ellipsoids) are either statistically added 
and centered on R (a, blue arrows), or 
generated via the numerical integration of a 
dynamical model from perturbed initial 
conditions (b, red arrows). P-, P+(red solid), 
and E (red dashed) represent two 
perturbations initially symmetric around, but 
later off-center of R, and the mean of the 
ensemble, respectively. For further 
explanation, see text.
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Figure. 3. Sample mean non-standardized 
(a) total variance, (b) information variance, 
(c) noise variance, and (d) information 
density (or pattern anomaly correlation) of 
500-hPa geopotential height forecasts in 
the NH extratropics (30º - 65ºN). The 
dashed line in panel (a) indicates the 
climatic variance present in the analysis.
 

Figure 5. Talagrand (or analysis rank) diagram indicating 
the frequency of the verifying analysis falling into the 
intervals defined by the 20 ranked values of 500 hPa 
geopotential height ensemble member forecasts at 
individual grid-points, aggregated over the NH 
extratropics (30º -65ºN) over the 3-month experimental 
period, at 0.5 (a) and 14.5 days lead times (b). A flat 
distribution (dashed horizontal lines) indicates a perfectly 
reliable ensemble (where forecast probabilities of events 
exactly match their observed frequencies).  


