

Dynamical Seasonal Prediction of the Asian Summer Monsoon in CMA-CPSv3

Xiaoyun Liang, Qiaoping Li and Tongwen Wu

CMA Earth System Modeling and Prediction Centre, China Meteorological Administration

23 August, 2023

Content

Description of CMA-CPSv3

Seasonal forecast of Asian Summer Monsoon in CMA-CPSv3

Conclusion

Development of CMA Climate Prediction System (CMA-CPS)

<u>China Meteorological Administration Climate Prediction System version3</u> (CMA-CPSv3)

Constituents	CMA-CPSv2	CMA-CPSv3
	BCC-AGCM2.2	BCC-AGCM3.0
Atmosphere model	(T106L26)	(T266L56)
	Horizontal resolution: ~100km,	Horizontal resolution: ~45km,
	Vertical: 26 layers with top layer at 2 hPa	Vertical: 56 layers with top layer at 0.156 hPa
Land model	BCC-AVIM1.0	BCC-AVIM2.0
	Horizontal resolution: ~100km	Horizontal resolution: ~45km
	MOM4-L40	MOM5-L50
Ocean model	Horizontal resolution: 1/3° ~ 1°	Horizontal resolution: 1/4° x 1/4°
Ice model	SISv1	SISv2
	Horizontal resolution: 1/3° ~ 1°	Horizontal resolution: 1/4° x 1/4°

Upgrades to Atmosphere model of CMA-CPSv3

		CMA-CPSv2	CMA-CPSv3
	Resolution	T106 (~110km), 46 layers with top layer at 1.979hPa and model lid at 1.459 hPa	T266 (~45km), 56 layers with top layer at 0.156 hPa and model lid at 0.092 hPa
	Dynamic core	Spectral framework described in Wu et al. (2008)	Same as in BCC-CSM2-MR but including spatially variant divergence damping.
	Deep convection	A modified Wu'2012 scheme described in Wu et al. (2019)	Revised Wu et al. (2019) scheme, including the effects of convective downdraft in neighboring grids.
	Shallow/Middle Tropospheric Moist Convection	Hack (1994)	Modified Hack (1994) scheme described in Lu et al. (2020b), incorporating a trigger based on lower tropospheric stability.
	Cloud macrophysics	Diagnosed cloud fraction described in Wu et al. (2019)	Revised Wu et al. (2019) scheme, excluding the special treatment for the marine stratocumulus.
Atmosphere component (BCC-AGCM)	Cloud microphysics	Modified scheme of Rasch and Kristj'ansson (1998) by Zhang et al. (2003), but included the aerosol indirect effects in which liquid cloud droplet number concentration is diagnosed using the aerosols masses.	Same as in BCC-CSM2-MR.
	Gravity wave drag	Gravity wave drag generated by both orography (Mcfarlane 1987) and convection (Beres et al., 2004).	Same as in BCC-CSM2-MR, but using tuned parameters related to model resolutions.
	Surface orographic drag	No treatment.	The turbulent mountain stress scheme as in Richter et al. (2010).
	Radiative transfer	Radiative transfer scheme used in CAM3 (Collins et al., 2004), but including the aerosol indirect effects, and the effective radius of the cloud droplet for liquid clouds is diagnosed using liquid cloud droplet number concentration.	Same as in BCC-CSM2-MR.
	Boundary Layer	Parameterization of Holtslag and Boville (1993), but modified PBL height computation as in Zhang et al. (2014)	The University of Washington Moist Turbulence scheme (Bretherton and Park, 2009)

Upgrades:

- Deep convection: revised effects of convective downdraft in neighboring grids.
- Shallow Convection: incorporating a trigger based on lower tropospheric stability.
- Cloud macrophsics: excluding the special treatment for marine stratocumulus.
- Gravity wave drag: using tuned parameters related to model resolutions.
- **Boundary layer:** changing to the university of Washington moist turbulence scheme.

Upgrades to Ocean model of CMP-CPSv3

		CMA-CPSv2	CMA-CPSv3
	Resolution	1°×1° with a tri-pole grid, but 1/3° latitude between 30°S and 30°N to 1.0° at 60° latitude, 40 layers in vertical	1/4°×1/4° with a tri-pole grid at north to 60°N, 50 layers in vertical
Ocean Component (MOM)	Tracer advection scheme	MOM4 (Griffies, 2005), Sweby advection scheme (Sweby, 1984)	MOM5 (Griffies, 2012), multi-dimensional piecewise parabolic method
	Neutral diffusion scheme	Griffies et al. (1998) with a constant diffusivity of 600 $m^2 s^{-1}$	None
	Surface boundary layer processes	K-profile parameterization (KPP, Large et al., 1994)	Same as in MOM4
	Submesoscale parameterization scheme	None	Fox-Kemper et al. (2008)
	shortwave penetration	Morel and Antoine (1994), with the maximum depth of 100m	Manizza et al. (2005), with the maximum depth of 300m

Upgrades to ice model of CMP-CPSv3

		CMA-CPSv2	CMA-CPSv3
Sea Ice Component (SIS)	Resolution	Same as in the ocean component, 3 vertical layers including 1 snow cover and 2 ice layers of equal thickness	Same as in the ocean component, 3 vertical layers including 1 snow cover and 2 ice layers of equa thickness
	Model physics	SISv1, Elastic-viscous-plastic dynamic processes, Semtner's thermodynamic processes	Same as SISv2
	Snow albedo	0.80	0.85
	Ice albedo	0.5826	0.68

Upgrades:

- Tracer advection scheme: using the multi-dimensional piecewise parabolic method.
- Sub-mesoscale parameterization scheme: introducing Fox-Kemper scheme.
- Shortwave penetration: Manizza et al. (2005), with the maximum depth of 300m.

Upgrades:

- Model physics: same as SISv2.
- Snow albedo: increasing to 0.85.
- Ice albedo: increasing to 0.68.

Ensemble prediction system

- Sub-seasonal forecast
- Ensemble size: 4 (SPPT)
- Forecast time: 60 days
- Release date: at 7:30 am of every day(real-time), Monday and Thursday (re-forecast)
- Re-forecast (on fly) period: the last 15 years

Seasonal forecast

- Ensemble size: 21 (SPPT+LAF)
- Forecast time: 7 months
- Release date: the 6th of the month
- Re-forecast period: 2001-2020 (20 years)

Seasonal forecast of Asian Summer Monsoon in CMA-CPSv3

• The lower-tropospheric level circulation over the western North Pacific is more reasonable.

Inter-annual variability of JJA 500hPa GPH and the Western North Pacific Subtropical High

Asian Summer Monsoon Index

- WY: the Webster-Yang monsoon index (Webster and Yang, 1992)
- IM: the Indian monsoon index (Parthasarathy et al., 1992)
- SEA: the Southeast Asian monsoon index (Wang and Fan, 1999)
- EA: the East Asian monsoon index (Zhang et al., 2003)

2004 2007 2010 2013 2016 2019

2001

TCC of JJA 500hPa GPH

Cor of jja h500

60W

60W

60W

0.9

Cor of jja h500

0

0

0

Diff of Cor

TCC of JJA SST

ENSO and other Tropical SST indices

Air-sea interaction

Conclusion

- CPSv3 can well predict many major features of the ASM, including the intensity and locations of the heavy rainfall centers, lower- and higher-level monsoon flows, anticyclonic circulation over the western North Pacific, and monsoon onset.
- Large-scale South Asian summer monsoon and the Southeast Asian summer monsoon are more realistically predicted than the Indian summer monsoon.
- > The interannual variation of the WNPSH, which greatly impacts the East Asian summer precipitation, is skillfully predicted in CPSv3.

Conclusion

- The tropical Pacific SST and tropical Indian Ocean SST indices and their associated anomalies of rainfall and circulation can be predicted 3 months in advance.
- Compared with CPSv2, the prediction skill of the summer precipitation over Asia is significantly improved in CPSv3, especially over eastern China. The benefits may be from the CPSv3 performs well in predicting SST anomalies in the tropical Pacific and the relationships of the Asian monsoon circulation and precipitation to the SST anomalies can be well simulated.

Thank you for your attention !

