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Three key points

1) We demonstrate a regional hydrologic multimodel ensemble
prediction system.

i) Multimodel ensemble forecasts have higher skill than single
model forecasts.

i) Hydrologic model diversity enhances forecast skill more
than increasing ensemble size alone.



e Many hydrological models with no clear
advantage of one model over another

e Challenging to choose a single model

for all flow conditions

Is a hydrological
multimodel system
useful for improving
streamflow forecasts?

HL-RDHM:https://www.slideserve.com/september-a
guilar/overview-of-nws-distributed-model-hl-rdhm

API-CONT:http://lwww.nws.noaa.gov/oh/hrl/nwsrfs/u
sers_manual/part2/ pdf/23apislc.pdf

WRF-Hydro:https://ral.ucar.edu/solutions/products/w
rf-hydro-modeling-system
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We assemble, implement and
verify a regional Hydrologic
Multimodel Ensemble Prediction
System [HMEPS]
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Run multiple
models in
forecasting mode
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We consider diverse set of hydrologic models

1) HL-RDHM (distributed. conceptual)
- 2 X 2 km? resolution

i) Continuous API (lumped, conceptual)
- Operational forecasts from NOAA's MARFC

i) WRF-Hydro (distributed. land surface)
- Employs land surface model NoahMP
- Gridded wave diffusion routing
- 1 x 1 km? resolution




Forecasting experiment is conducted in four nested
subbasins in the mid-Atlantic region

e GEFSRv2 (2004-2009) is
used as weather forcing.
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e \We employ quantile
regression-Bayesian model §
averaging (QR-BMA) as  §
multimodel ensemble
postprocessor.
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e Verification is performed
conditioned on forecast lead
times (1-7 days) & basin size.




There is no single predictive system that can be considered
best in all forecasting conditions
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Multimodel prediction improves forecast skill over single model
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- Equal weight (9-m) = QR-BMA (9-m) = QR-BMA (33-m)

Are any skill improvements from the multimodel ensemble forecasts
dominated by model diversity or the addition of new ensemble members? 4



Model diversity enhances forecast skill more than ensemble size alone
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i)

Ongoing works and future plans...

How can we enhance the predictability of extreme events?

ow can we effectively incorporate and analyze additional

uncertainties, considering their potential interactions?

i) What insights can be gained from emerging data-model fusion

strategies, such as combining AlI/ML and DA

Iv) What are the robust strategies for flood-risk management?
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