Leveraging Ensemble Prediction Developments in HAFS to Evaluate Tropical Cyclone Hazards

Kelly Ryan

Cooperative Institute for Marine and Atmospheric Science, Miami, FL

NOAA / Atlantic Oceanographic and Meteorological Laboratory, Miami, FL

Jonathan Poterjoy and Kenta Kurosawa

University of Maryland, College Park, MD

 Evaluate impact of data assimilation strategy on tropical cyclone prediction

> How does relaxing Gaussian error assumptions impact the prediction of tropical cyclones?

Experiments

R_{NW}

Rmax

Ravg

RSW

Conclusions

- Evaluate impact of data assimilation strategy on tropical cyclone prediction
- Extend impact assessment to hazard-driven metrics

Track

Intensity

Wind distribution (size, asymmetry) Storm Surge (wind distribution) Rainfall (wind distribution) Severe (wind distribution)

Symmetric TC "size" (defined by radius of 34-knot winds) correlates with associated surge/rainfall

Experiments

Results

Conclusions

Regional configuration of HAFS

<u>Model</u>

- FV3 using physics from 2021 real-time implementation
- 6 km grid
- 81 vertical levels up to 2 hPa

19-days of fully cycling DA

- 5 day spin up
- 6-hourly cycling (40 members)
- Forecasts out to 4 days for deterministic solutions and 10 individual members

Two Atlantic tropical cyclone cases

Conclusions

Data assimilation comparison

• Updates 40 HAFS ensemble members about variational analysis using:

EnKF-Var Assumes gaussian error characteristics

LPF-Var Not constrained by gaussian assumptions

Poterjoy, J. 2022a: Implications of multivariate non-Gaussian data assimilation for multi-scale weather prediction. Mon. Wea. Rev., Poterjoy, J., 2022b: Regularization and tempering for a moment-matching localized particle filter. Q. J. Roy. Meteor. Soc.

errors

Experiments

Results

Conclusions

Substantial differences in ensemble spread

Experiments

Results

Experiments

Results

Experiments

Results

Experiments

Experiments

Results

Experiments

Results

Conclusions

Relaxing Gaussian assumptions:

- Increases ensemble spread despite similarities in deterministic solutions or ensemble means True for all verifying metrics (location, intensity, size, wind distribution)
- Allows ensemble members to reflect variety of possible wind distributions

 better reflect associated hazard potential

Future/continuing assessment

Wind distribution asymmetries (degree of asymmetry, direction of asymmetry)

Supplementary

Last KLCH WSR-88D radar reflectivity image of Hurricane Laura at 0554 UTC 27 August 2020 before the radar was destroyed Image courtesy of NWS Lake Charles WFO.

