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Which one comes from DA?

250-mb absolute vorticity for posterior member and 24-h
forecast valid at same time.
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Which one comes from DA?

EnKF 24-h Forecast
(Gaussian DA)



3

Which one comes from DA?

250-mb absolute vorticity for posterior member and 24-h
forecast valid at same time.
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Which one comes from DA?

24-h Forecast Particle filter
(Non-parametric DA)
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Which one comes from DA?

EnKF Particle filter
(Gaussian DA) (Non-parametric DA)
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Gaussian DA-induced bias in KE spectrum

Average zonal Kinetic energy spectrum for single members:
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Combining particle filters with Var

One objective is to explore implications of replacing the EnKF
with LPF for prediction systems that run EnVar.

Motivation:

Most prediction systems rely on EnVar for practical reasons;
e.g., use of a high-resolution deterministic “control.”

EnKF is typically used to update ensemble—to provide future
background error covariance for EnVar.

EnKF members are re-centered on EnVar analysis.
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Combining particle filters with Var

One objective is to explore implications of replacing the EnKF
with LPF for prediction systems that run EnVar.

Motivation:

x

i. Posterior tends to be closer to a
Gaussian than the prior.

ii. Re-centering posterior ensemble on
Var analysis is okay, as long as the
distribution is close to Gaussian.

← Var analysis alongside PF members
following assimilation.
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Combining particle filters with Var

One objective is to explore implications of replacing the EnKF
with LPF for prediction systems that run EnVar.

Motivation:

x

iii. Incremental 3DVar/4DVar can
solve moderately nonlinear DA
problems through an outer loop
(e.g., x on left).

iv. Posterior targeted by Var is more
consistent with PF than EnKF.

← Var analysis alongside EnKF members.
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Combining particle filters with Var

DA comparisons:

“EnKF-Var” ← HAFS ensemble updated with EnKF and Var

“PF-Var” ← HAFS ensemble updated with LPF and Var

In both experiments, role of EnKF or LPF is to update 40
HAFS ensemble members about a variational analysis.

Verification:

10-member forecasts generated every 6 h for 2 weeks

Storm features verified using NHC Best Track data

Synoptic scale features verified using ERA5
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Verification (2 weeks of forecasts)
Track and intensity RMSEs for Laura

and Marco (2020)
Domain-average RMSEs

from ERA5

Currently testing with 2023 HAFS-A and HAFS-B;
preliminary results shows similar improvements with LPF-Var.
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Verification (2 weeks of forecasts)
Track and intensity RMSEs for Laura

and Marco (2020)
Domain-average RMSEs

from ERA5

LPF will soon be applied for hourly-updated GFS (FY23
WPO Innovations for Community Modeling Competition).



9

Deterministic forecasts from Var

Domain-average RMSEs from ERA5
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Summary

Localized particle filters now provide a feasible non-Gaussian
option for NWP.

Tangible benefits over EnKF already seen in HAFS, despite
decades of effort designing weather prediction systems around
Gaussian methods.

Opens the door to new research: (i) non-Gaussian likelihoods,
(ii) novel measurements, (iii) replacing QC with appropriate
choices for obs error distributions, etc.
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