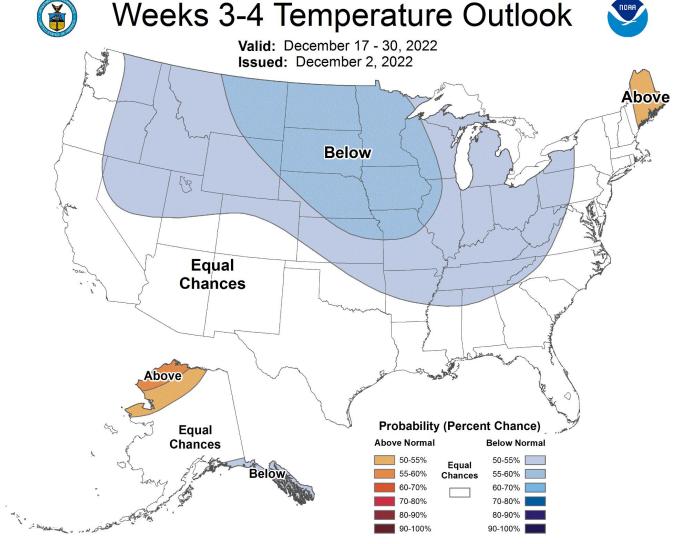

Weeks 3-4 Multi-Model Ensemble Subsampling: A Real-time Verification

Cory Baggett¹

¹Climate Prediction Center / NCEP / NWS / NOAA

9th NOAA Ensemble Users Workshop

August 23, 2023



Motivation

- The Weeks 3-4 Temperature and Precipitation Outlooks are issued by the Climate Prediction Center each Friday.
- The outlooks provide stakeholders with probabilistic forecasts of the likelihood of above or below normal temperature and precipitation during the 2-week period beginning at lead Day 15.
- A large variety of dynamical and statistical model guidance are available to the forecaster to help produce the outlook.

Motivation

Dynamical model guidance comes primarily from 5 extended-range ensemble prediction systems provided by:

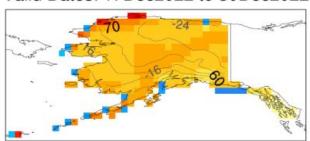
0	ECMWF	51 members	European Centre for Medium-range Weather Forecasting
0	GEFSv12	31 members	NCEP Global Ensemble Forecast System Version 12
0	CFSv2	32 members	NCEP Climate Forecast System Version 2
0	ECCC	21 members	Environment and Climate Change Canada
0	JMA	50 members	Japan Meteorological Agency

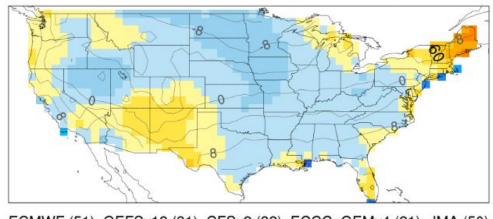
A total of 185 ensemble members in this multi-model ensemble suite.

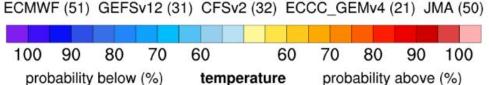
Motivation

Question: Is there a subsample of these 185 ensemble members that can be chosen objectively in real-time that provides a more skillful forecast than the all member multi-model ensemble suite?

- It's possible such a subsample exists in a multi-model ensemble suite, where not all models are produced using the same protocols, physics, and/or perturbation schemes.
- Work for this project was funded as an OSTI NWS Fiscal Year 2020 Milestone.
- A promising subsampling method was implemented as an experimental real-time tool at the beginning of Fiscal Year 2021.
- This presentation highlights results from the experimental real-time tool.
- Work is ongoing to move the tool into operations.






Example Case - All Member Forecast

Temperature: Week 3-4 All Members Probabilistic Forecast

Valid Dates: 17Dec2022 to 30Dec2022

climatology (°C): 1991-2020

Weeks 3-4 All-Member Temperature Probabilistic Forecast

Method: All (185) Members

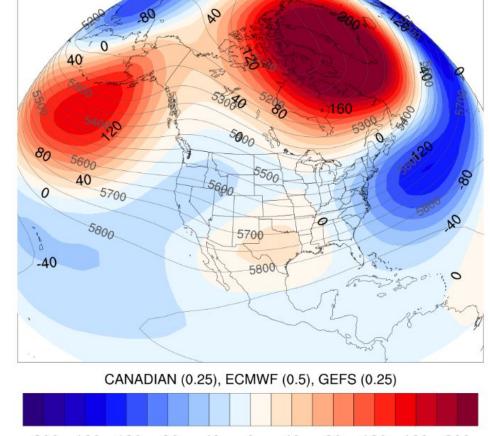
Issued: December 2, 2023

Valid: December 17-30, 2023

Synopsis: Above normal temperatures favored in Alaska; below normal temperatures favored throughout much of CONUS

Example Case - Subsampling Method

Week 2 500-hPa Height Anomaly Autoblend


Method: Weighted-mean of the ensemble mean anomalies from the ECCC (25%), ECMWF (50%), and GEFS (25%)

Issued: December 2, 2023

Valid: December 10-16, 2023

Z500 Week 2 Autoblend

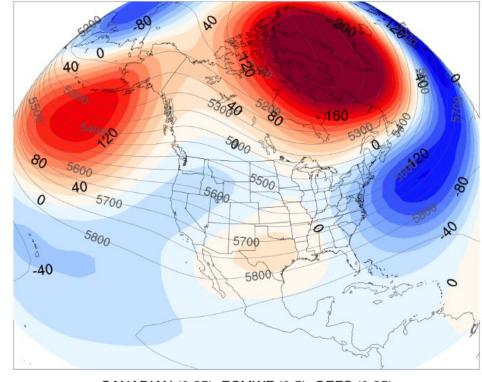
Valid Dates: 10Dec2022 to 16Dec2022

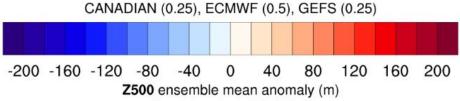
-200 -160 -120 -80 -40 0 40 80 120 10 **Z500** ensemble mean anomaly (m)

climatology (m): 1991-2020

Example Case - Subsampling Method

1. Calculate the pattern correlations between:


the Week 2 500-hPa Height Anomaly Autoblend and

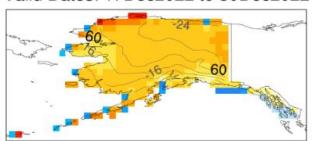

the Week 2 500-hPa Height Anomaly forecast from each individual member of the 185 member multi-model ensemble suite.

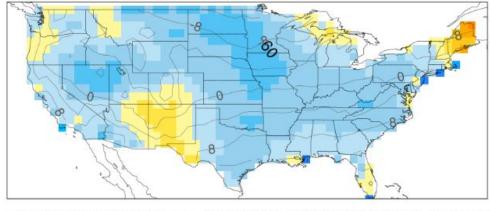
- 2. Rank these 185 pattern correlation values.
- 3. Subsample the members with the highest pattern correlations.
- 4. From this subsample, create:
 - a. Weeks 3-4 500-hPa Heights Ensemble Mean Anomaly Forecast
 - b. Weeks 3-4 Temperature Probabilistic Forecast
 - c. Weeks 3-4 Precipitation Probabilistic Forecast

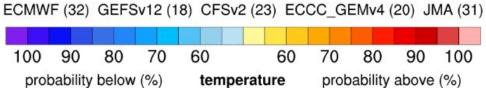
Z500 Week 2 Autoblend

Valid Dates: 10Dec2022 to 16Dec2022

climatology (m): 1991-2020






Example Case - 67% Subsample Forecast

Temperature: Week 3-4 Subsample Probabilistic Forecast

Valid Dates: 17Dec2022 to 30Dec2022

climatology (°C): 1991-2020

Weeks 3-4 67% Subsample Temperature Probabilistic Forecast

Method: 67% (124) Members

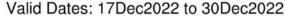
Issued: December 2, 2023

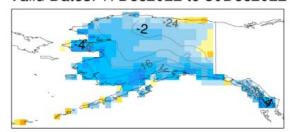
Valid: December 17-30, 2023

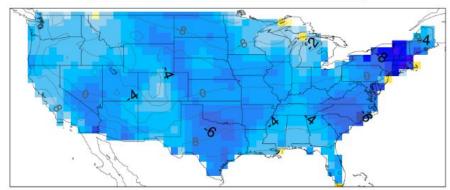
Synopsis: Above normal temperatures favored in Alaska; Below normal temperatures favored over much of CONUS.

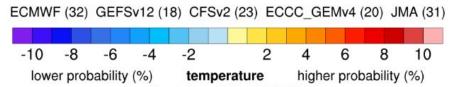
Example Case - Difference between All Member and 67% Subsample Forecasts

67% Subsample

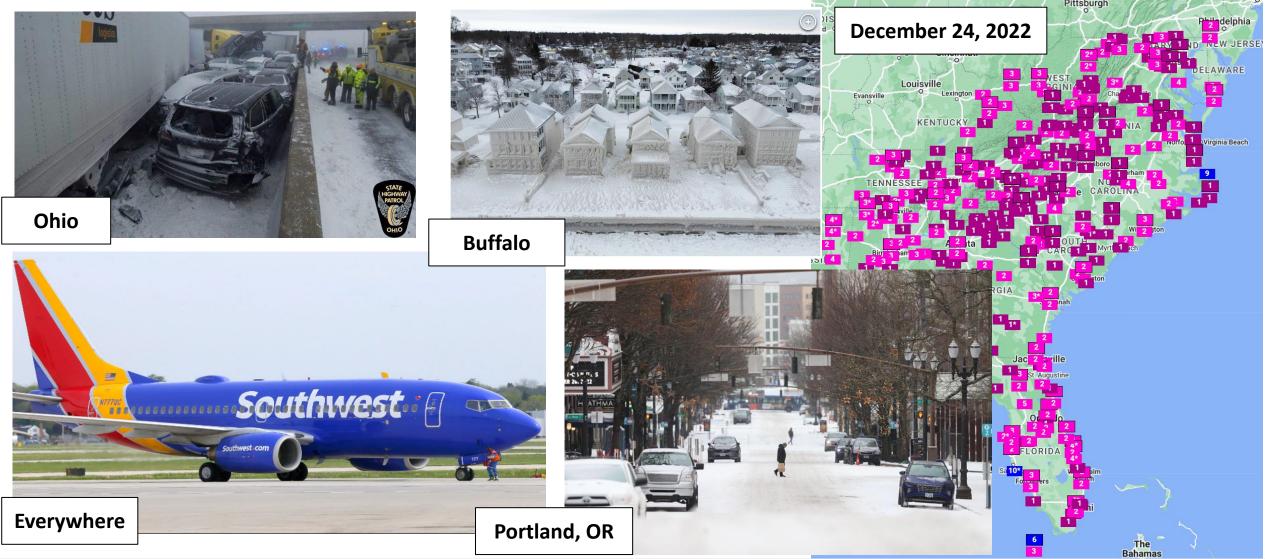

All Members


Temperature: Week 3-4 Subsample Probabilistic Forecast Valid Dates: 17Dec2022 to 30Dec2022 ECMWF (51) GEFSv12 (31) CFSv2 (32) ECCC_GEMv4 (21) JMA (50) ECMWF (51) GEFSv12 (31) CFSv2 (32) ECCC_GEMv4 (21) JMA (50) probability below (%) temperature probability above (%) climatology (°C): 1991-2020 Temperature: Week 3-4 Subsample Probabilitic Forecast Valid Dates: 17Dec2022 to 30Dec2022 Valid Dates: 17Dec2022 to 30Dec2022 FEMWF (32) GEFSv12 (18) CFSv2 (23) ECCC_GEMv4 (20) JMA (31) ECMWF (51) GEFSv12 (31) CFSv2 (32) ECCC_GEMv4 (20) JMA (31) 100 90 80 70 60 60 70 80 90 100 probability below (%) temperature probability above (%) climatology (°C): 1991-2020


The subsample forecast increased the probabilities of below normal temperatures across nearly all of Alaska and CONUS.

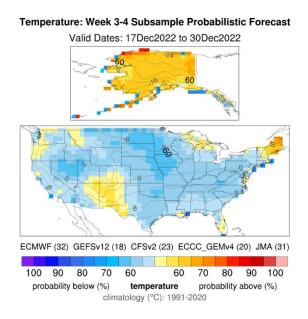

Difference

Temperature: Week 3-4 Subsample minus All Members



climatology (°C): 1991-2020

Example Case - What verified?

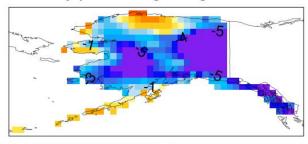

Example Case - Verification

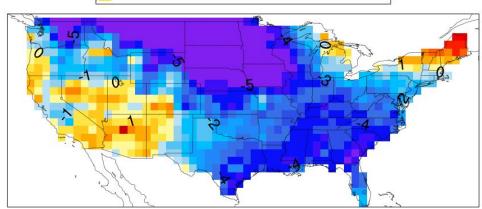
All Members

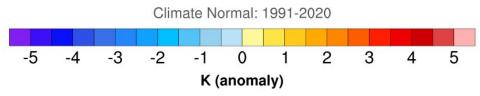
Valid Dates: 17Dec2022 to 30Dec2022 Valid Dates: 17Dec2022 to 30Dec2022 ECMWF (51) GEFSv12 (31) CFSv2 (32) ECCC_GEMv4 (21) JMA (50) 100 90 80 70 60 60 70 80 90 100 probability below (%) temperature probability above (%) climatology (°C): 1991-2020

HSS = 27.5

67% Subsample

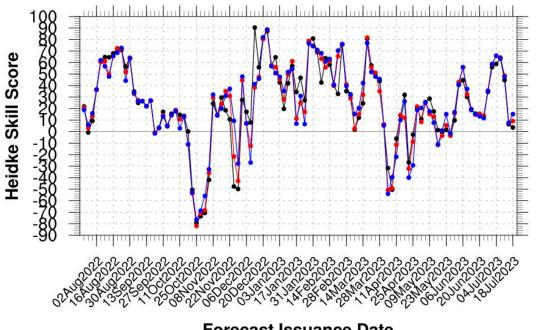

HSS = 44.6


In this example case, the 67% subsample forecast has a higher skill score compared to the all member forecast.


Observed

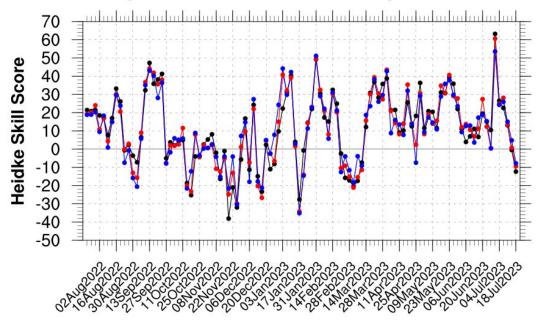
2-m Temperature Anomaly

14-day period beginning 20221217



Temperature

Temperature: Week 3-4 Verification by Issuance Date

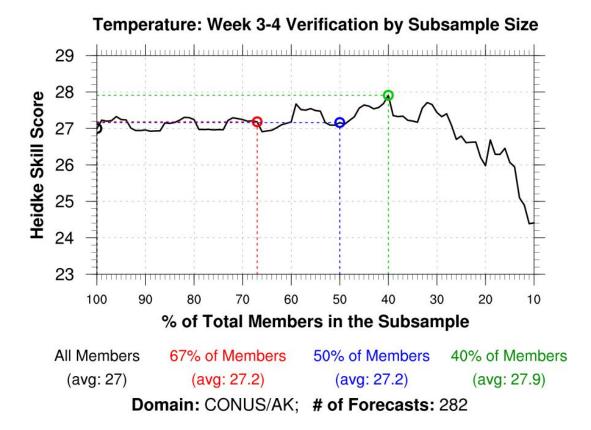

Forecast Issuance Date

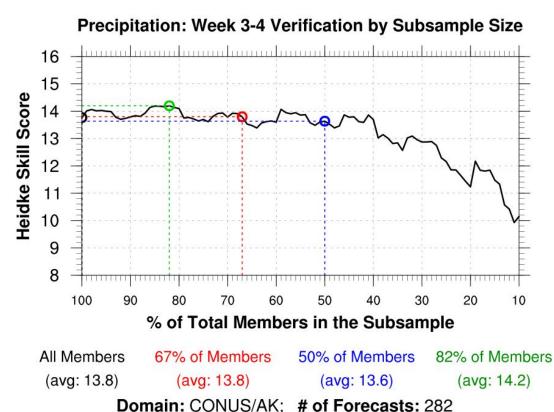
All Members 67% of Members 50% of Members (avg: 25.2) (avg: 24.6) (avg: 25.3)

Domain: CONUS/AK: # of Forecasts: 104

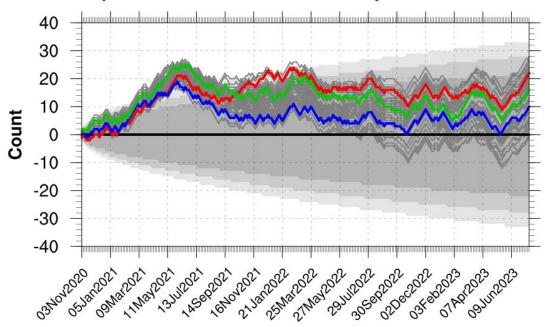
Precipitation

Precipitation: Week 3-4 Verification by Issuance Date


Forecast Issuance Date


All Members 67% of Members 50% of Members (avg: 11.2) (avg: 11) (avg: 11)

Domain: CONUS/AK: # of Forecasts: 104

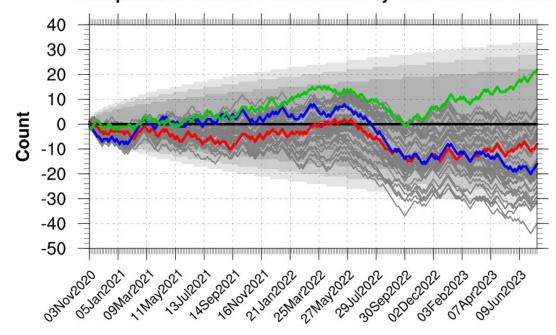

~3.3% improvement using 40% of members

~2.9% improvement using 82% of members

Temperature: Week 3-4 Verification by HSS Random Walk

Forecast Issuance Date

All Members 67% of Members 50% of Members 40% of Members (Count: 0) (Count: 10) (Count: 16)


Gray Lines: 70% to 30% of Members

Gray Shading: α = 0.20, 0.10, 0.05 (dark to light)

Positive Count: Subsample Wins; Negative Count: All Members Wins

Domain: CONUS/AK; # of Forecasts: 282

Precipitation: Week 3-4 Verification by HSS Random Walk

Forecast Issuance Date

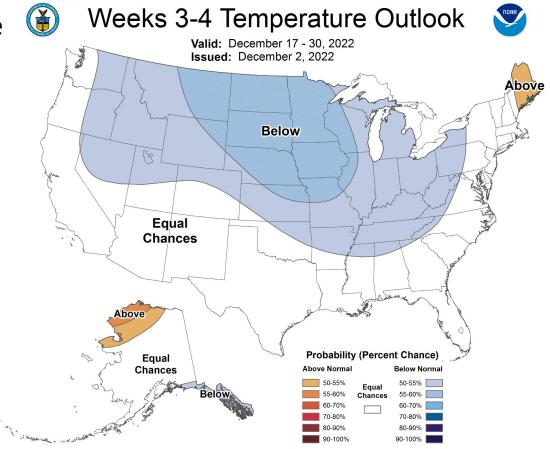
All Members 67% of Members 50% of Members 82% of Members (Count: 0) (Count: -8) (Count: -16) (Count: 22)

Gray Lines: 70% to 30% of Members

Gray Shading: α = 0.20, 0.10, 0.05 (dark to light)

Positive Count: Subsample Wins; Negative Count: All Members Wins

Domain: CONUS/AK; # of Forecasts: 282

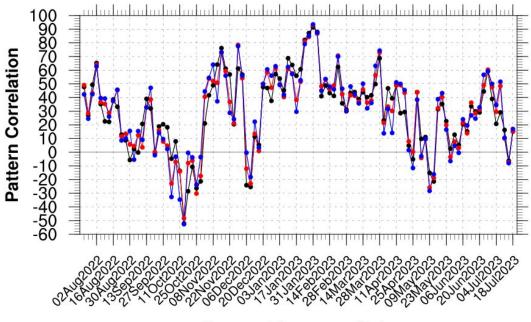


Conclusions

- There is borderline statistically significant skill score improvement using subsampled multi-model ensemble suites.
- It is not entirely clear in real-time how many members should be subsampled, but the real-time verification is providing insight.
- The tool still provides value, as it 1) provides a link between CPC's Week 2 and Weeks 3-4 outlooks, 2) provides an additional interpretation of the dynamical models through its unique post-processing, and 3) can be used to test additional subsampling methods.

Thank you! Any Questions?

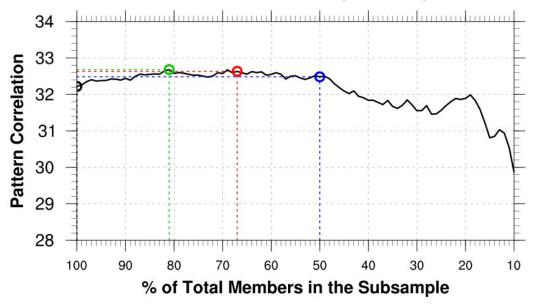
<u>Link to Climate Diagnostics and Prediction Workshop</u>
<u>Extended Abstracts</u>



Additional Slides

Z500: Week 3-4 Verification by Issuance Date

Forecast Issuance Date


All Members (avg: 29.7)

67% of Members (avg: 30.4)

50% of Members (avg: 30.4)

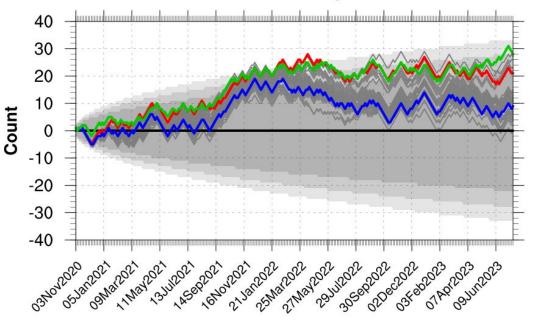
Domain: 20N to 87.5N and 180E to 330E; # of Forecasts: 104

Z500: Week 3-4 Verification by Subsample Size

All Members 67 (avg: 32.2)

67% of Members (avg: 32.6)

50% of Members 81% of (avg: 32.5) (avg


81% of Members (avg: 32.7)

Domain: 20N to 87.5N and 180E to 330E; # of Forecasts: 282

Forecast Issuance Date

All Members 67% of Members 50% of Members 81% of Members (Count: 0) (Count: 21) (Count: 9) (Count: 28)

Gray Lines: 70% to 30% of Members

Gray Shading: α = 0.20, 0.10, 0.05 (dark to light)

Positive Count: Subsample Wins; Negative Count: All Members Wins

Domain: 20N to 87.5N and 180E to 330E; # of Forecasts: 282

Subsampling Methods Tested

Name of Method	Brief Description of Method
Autoblend	Subsample members by removing individual members that least match the Week 2 autoblend forecast of Z500 derived from the ECMWF (50%), Canadian (25%), and GEFS (25%)
Ensemble Mean	Subsample members by removing individual members that least match the Week 3-4 ensemble mean forecast of Z500 derived from all members
Model	Subsample members by removing the entire suite from a given subseasonal model
ENSO-MJO Verifications	Subsample members by removing the entire suite from a given subseasonal model based on its historical verification given certain ENSO and MJO conditions at model initialization
Regime Transition Verifications	Subsample members by removing individual members that forecast regime transitions that have poor historical verifications
Regime Transition Frequencies	Subsample members by removing individual members that forecast regime transitions that have rarely occured in observations
MLR	Subsample members by removing individual members that least match the Week 3-4 forecast derived from the statistical multiple linear regression (MLR) tool
Trend Pattern	Subsample members by removing individual members that least match the expected pattern derived from long-term trends at Week 3-4
Week 1*	Subsample members based on their Week 1 verification
Week 2*	Subsample members based on their Week 2 verification
Tropical Precipitation*	Subsample members based on their Week 2 verification of tropical precipitation
Attribution*	Subsample members based on their Week 2 verification over regions attributed to skill at Week 3-4

