Using Saildrone Observations to Validate Ensemble Forecasts in the Arctic

Chidong Zhang, NOAA Pacific Marine Environmental Laboratory (chidong.zhang@noaa.gov) Mark Yamane, Subhatra Sivam, and Isabella Dressel, NOAA Hollings Scholarship Program

Nineth NOAA Ensemble Users Workshop August 22 – 24, 2023 NOAA Center for Weather and Climate Prediction

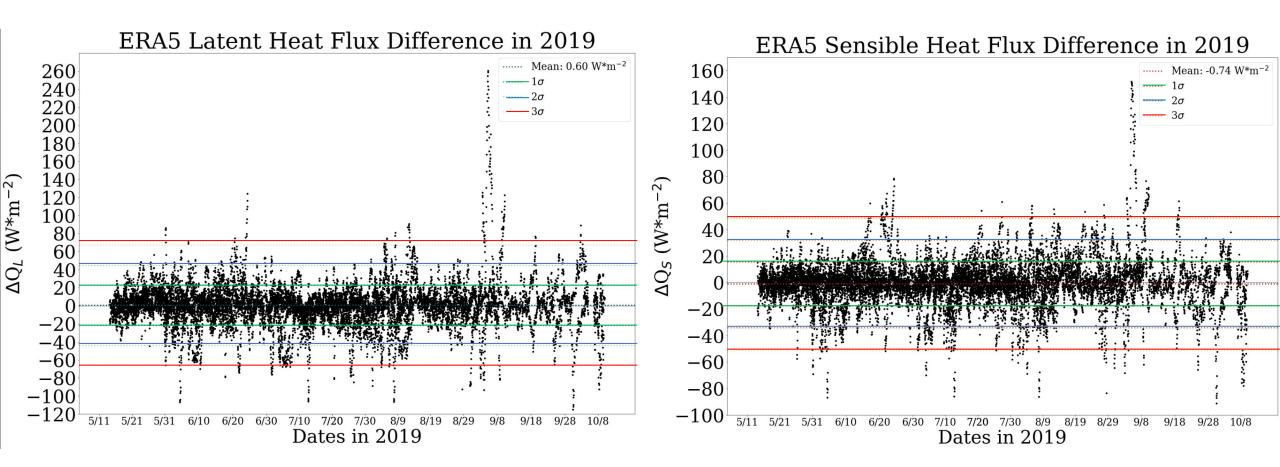
Using Saildrone Observations to Validate Ensemble Forecasts in the Arctic

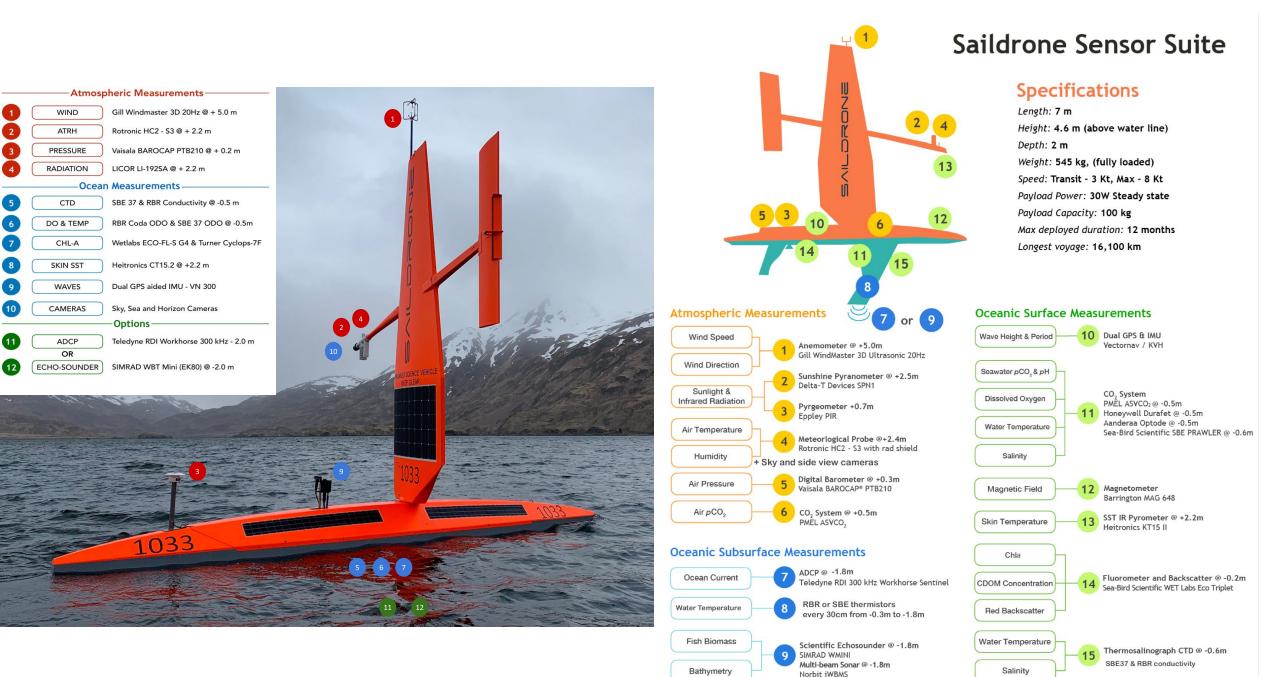
Chidong Zhang, NOAA Pacific Marine Environmental Laboratory (chidong.zhang@noaa.gov) Mark Yamane, Subhatra Sivam, and Isabella Dressel, NOAA Hollings Scholarship Program

Arctic warming amplification – sea ice – surface energy fluxes Arctic Cyclones – surface energy fluxes?

Nineth NOAA Ensemble Users Workshop August 22 – 24, 2023 NOAA Center for Weather and Climate Prediction

Why Bother? Can't we just use global reanalysis products to validate prediction?



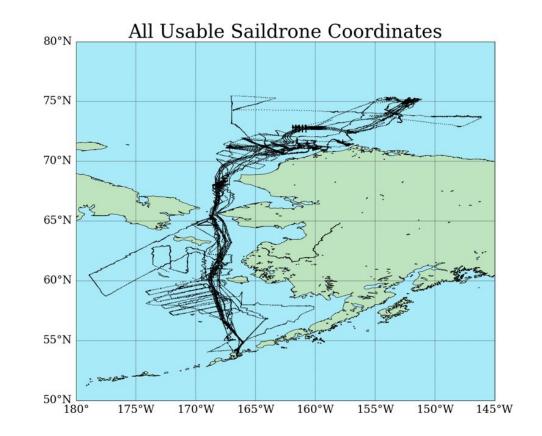


Question: Can observations from uncrewed surface vehicles (USVs) be used to validate weather forecast?

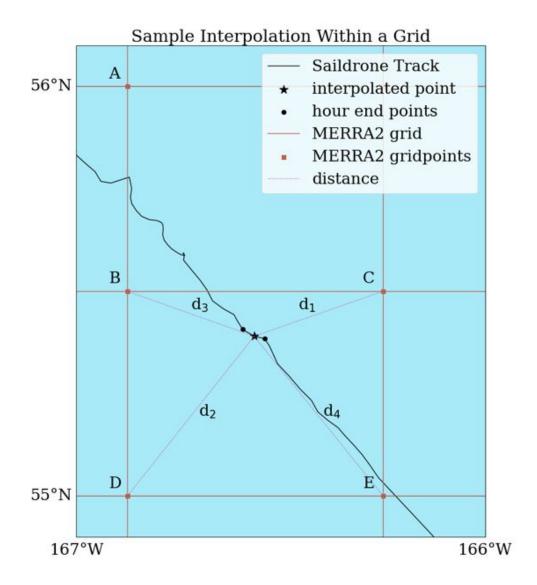
Advantages of USV observations: In regions without other in situ observations (e.g., Arctic oceans, insight hurricanes)

Challenges of using USV observations:

- Moving platforms vs. fixed model grids
- Continuous sampling vs. discrete model output
- Geographical and seasonal coverages vs. sparse sampling
- Ice vs. no ice

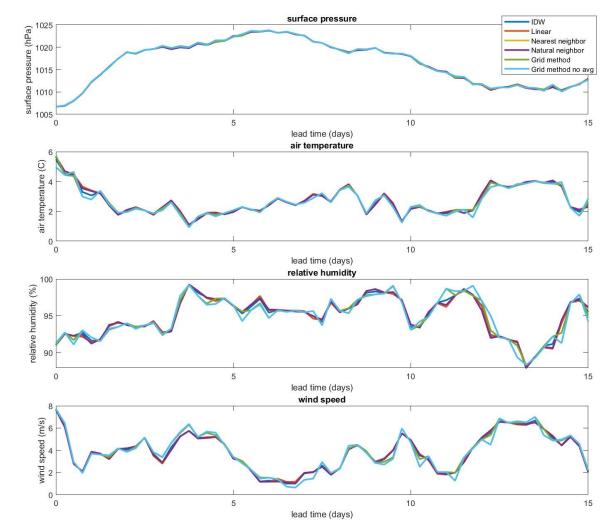


Moving platforms vs. fixed model grids



Different Interpolation Methods

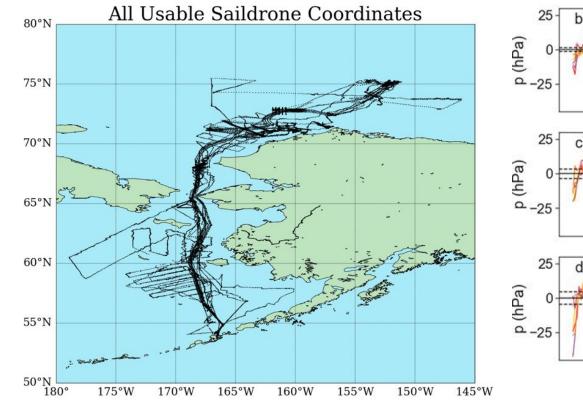
- nearest neighbor
- natural neighbor
- bi-linear linear
- inverse distance weighting

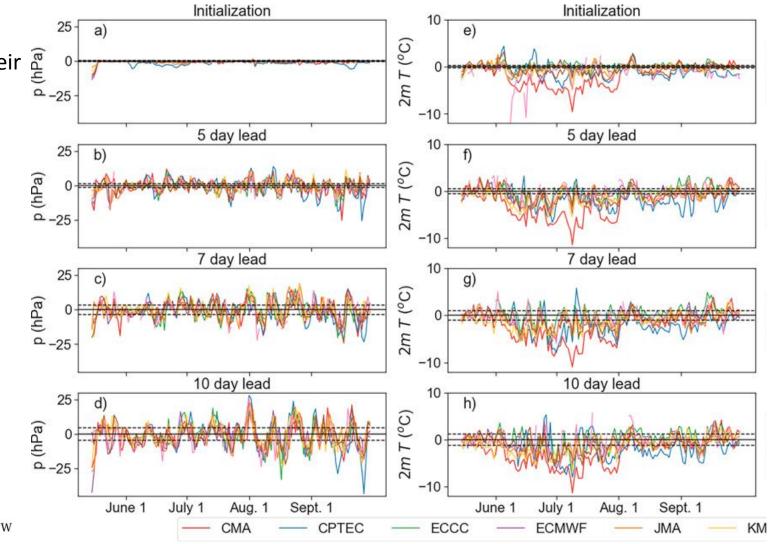


lce vs. no ice

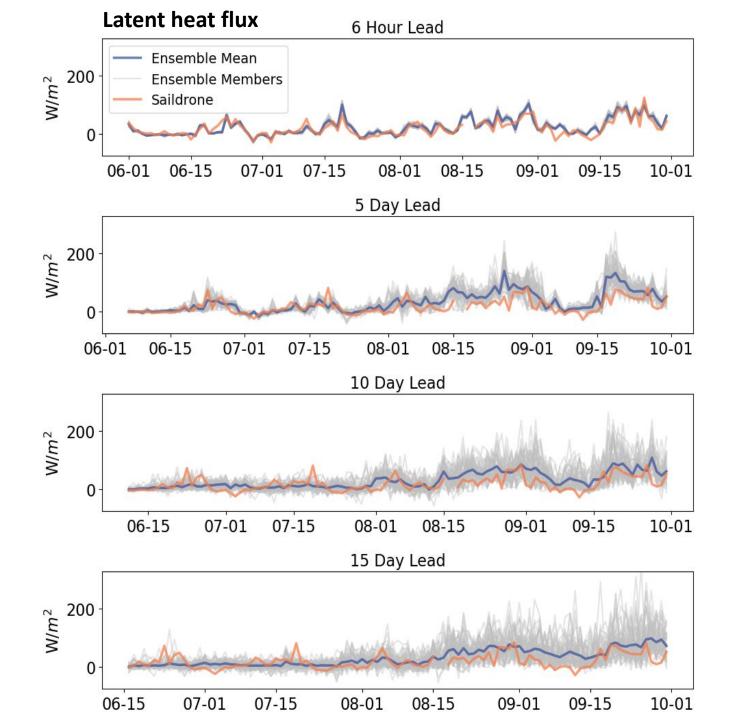
Geographical and seasonal coverages vs. sparse sampling

Assumption: The state variables may be geographically and seasonally dependent, their $\hat{\mathcal{C}}_{\underline{c}}$ forecast error are not.

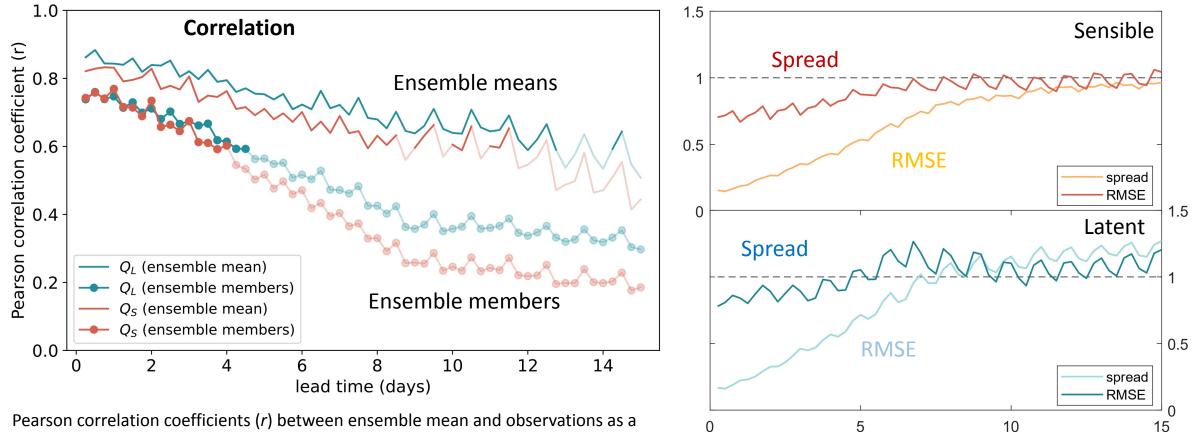




Zhang et al. (2022)



Flux forecast prediction skill and model–observation correlations decline around 4-7 days



Pearson correlation coefficients (*r*) between ensemble mean and observations as a function of model lead time. Significant (**solid line**) and insignificant (**transparent**) *r* values.^{*}

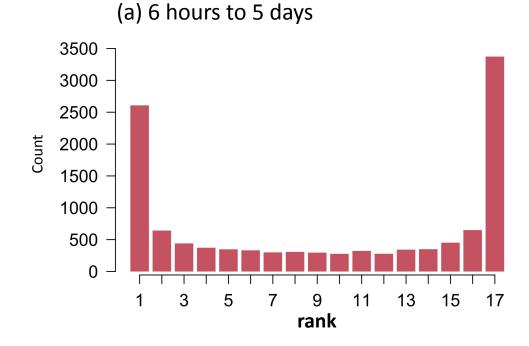
^{*}Thresholds for significance are based on the effective sample size (latent: 11, sensible: 15) determined by saildrone autocorrelation using a 95% significance level.

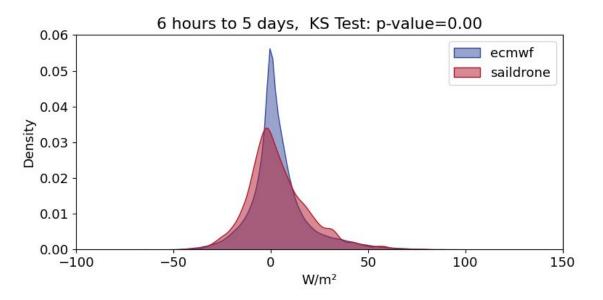
Spread-skill relationship for sensible (top) and latent (bottom) heat fluxes using ensemble spread and RMSE normalized by the observation standard deviation.

lead time (days)

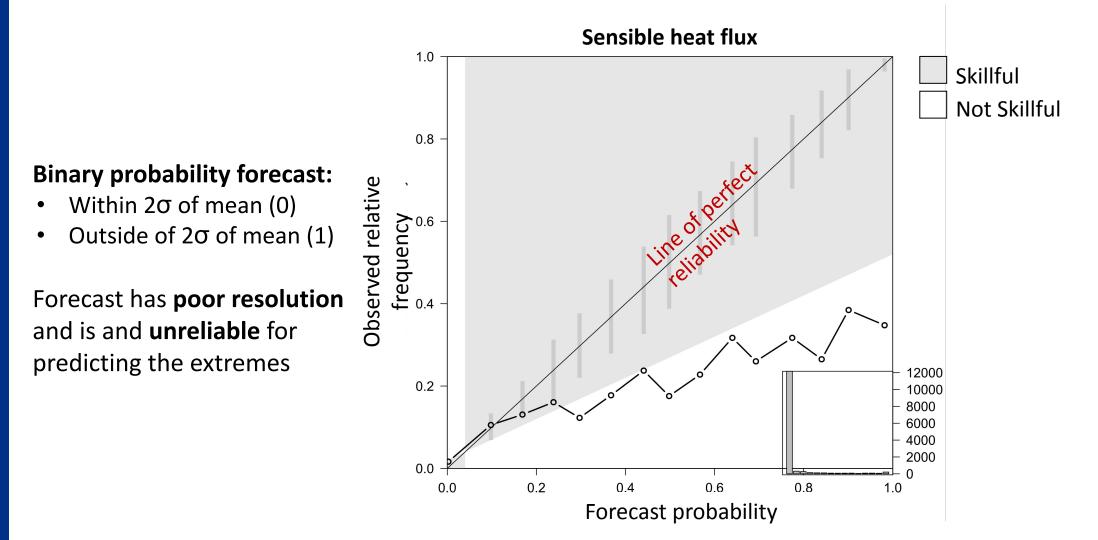
Flux forecasts are underdispersed and overconfident Sensible heat flux (observation ranks)

Sensible heat flux (PDFs)





Extreme flux events ($Q_{s} > 2\sigma$) have unreliable forecasts



Reliability diagrams for 6-hour to 5-day lead times for sensible heat flux. Probabilities are based on fluxes greater than 2 standard deviations away from the mean.

Questions

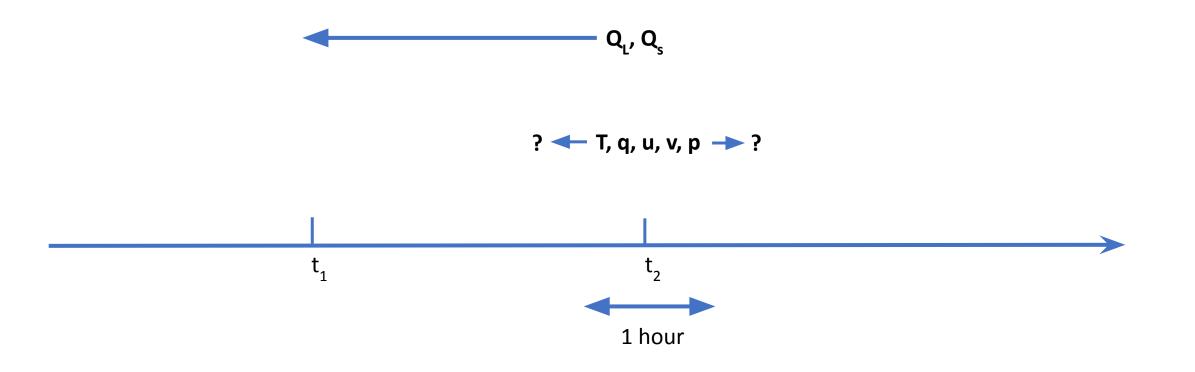
- How to define "flux events" for probabilistic forecast validation?
- How to choose validation metrics that may lead to physically meaningful insights?
- How to test the statistical significance of differences validation scores?
- Does it make sense to compare scores for different variables (e.g., fluxes, T, q, V)?

Future Work

- Include more saildrone observations (2017, 2018)
- Include other ensemble forecasts
- Include other validation metrics
- Trace the causes of errors in flux prediction

Nineth NOAA Ensemble Users Workshop August 22 – 24, 2023 NOAA Center for Weather and Climate Prediction

Continuous sampling of saildrones (every minute) vs. discrete model output (6 hourly)



Error growth due to time and space increments

 $\Delta t \xrightarrow{t_2, s_2} t_1, s_1 \xrightarrow{\Delta t} \Delta s$

Let the forecast error be

$$E(s, t) = P(s, t) - O(s, t),$$
 (A1)

where s represents location, t is time, P is the forecast, and O is the observations. The error increment at a fixed location s₂ over a time period $\delta t = t_2 - t_1$ is

$$\delta_t E(s_2, \delta t) = E(s_2, t_2) - E(s_2, t_1).$$
(A2)

For a mobile platform, from time t_1 to t_2 , its location would change from s_1 to s_2 . So the error increment from time t_1 to t_2 measured at location s_2 is

$$\delta E(s_2, \delta t) = E(s_2, t_2) - E(s_1, t_1)$$

= $[E(s_2, t_2) - E(s_2, t_1)] + [E(s_2, t_1) - E(s_1, t_1)]$
= $\delta_t E(s_2, \delta t) + \delta_s E(\delta s, t_1),$ (A3)

where $\delta_t E(s_2, \delta t)$ is the intended measure of the error increment in time [Eq. (A2)], and $\delta_s E(\delta s, t_1) = E(s_2, t_1) - E(s_1, t_1)$ measures the spatial variability at t_1 over the distance $\delta s = s_2 - s_1$ traveled by the mobile platform during δt . The practically measured error increment $\delta E(s_2, \delta t)$ can be taken as a close approximation of the intended error increment in time $\delta_t E(s_2, \delta t)$ only if $\delta_s E(\delta s, t_1)$ is negligibly small.

Zhang et al. (2022)

Examples of ECMWF Ensemble Means

Surface Pressure

Surface Relative Humidity

