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Boreal summer forecast soil moisture, layer 1 (SM1) error
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NWP ensembles underestimate the forecast
uncertainty at and near the land surface

Ensembles are not explicitly perturbed to
account for land model uncertainty

Atmospheric forcing is also under-dispersed,
but even with better atmospheric spread, still
need to account for land model error
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Objective: better represent forecast uncertainty
at/near land in NCEP’s NWP (GFS) ensemble
system

Improve ensemble-based model uncertainty

. . T TS
estimates (e.g., forecast uncertainty over 00 06 12 18 24 30
Iand) Target estimates, calculated

Ensemble standard deviation,

from archived operational

updates in the NWP ensembles and comparison to ERA-5 UFS output
analysis (T2m)

Enable coupled ensemble-based land DA using triple colocation (SM1),
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Land Model Physics and Error Propagation

- The land is strongly-forced Catchment Root-zone soil
(dissipative), and over time will moisture simulation, from 3 ICs
converge to a state determined by its and identical forcing [m3/m3]
forcing Rootzone soil moisture [m3/m3]

- Not chaotic, little information gained |
by perturbing initial conditions 0 350
0.325

» Land surface models do not simulate 0300 \
horizontal flow between grid cells 0.275 i
- No horizontal flow of errors 222:
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Adding Land Model Uncertainty

» Test methods drawn from atmospheric and land ensemble DA communities:

- State-pert: Stochastically perturb the SMC and STC at each time step
(standard approach used in offline land DA platforms, such as LIS GLDAS)

- SPPT-pert: Apply stochastically perturbed physics tendencies (SPPT) scheme to SMC and STC
Motivation: use model physics to provide relationship between SM and ST deltas

- Param-Pert: Stochastically perturb key model parameters controlling the land /atmosphere fluxes
(here: vegetation fraction)

Motivation: physically consistent perturbations in the land and atmosphere

» Tested each in a suite of experiments:
« 30 member ensemble at C192, run 30 days from July 10, 2019
- GFSv16 model, with Noah land model
* DA cycling, hybrid 3DEnVar DA
» Assimilating the standard atmospheric obs, using standard atmospheric stochastic physics
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Ens. Spread in Soil Moisture Layer 1 (SMC1)

GFS SM1 Forecast Uncertainty [m3/m3]
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Target (red) is best estimate of forecast error standard Soil Wetness Index = Soil moisture,
deviation (c.f, independent obs). Others are scaled between dry (0) and wet (1)
ensemble-based estimates from each experiment. limits.
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Ens. Spread in Soil Moisture Layer 1 (SMC1)

. State-pert induces too GFS SM1 Forecast Uncertainty [m3/m3] . Param-pert
much spread in dry 0.035- -3 looks
regions. Due to soll 0.030 - : reasonable.
moisture memory being y Spread could be
longer in dry conditions. %94 inflated by

0.0204 / perturbing
- SPPT-pert can induce 0015 - additional
only a small amount of | g — variables.
g
Spread' Inherent 0.010- :t :antter:;ert-noflattop
limitation of the method. 05 —o— state-pert
' / —e— sppt-pert
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Soil Wetness Index = Soil moisture,
scaled between dry (0) and wet (1)
limits.

Target (red) is best estimate of forecast error standard
deviation (c.f, independent obs). Others are
ensemble-based estimates from each experiment.
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Ens. Spread in 2m Temperature and Specific Humidity
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d) GFS Q2m forecast uncertainty, H12 [g/kd]
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Ensemble land/atmosphere correlations, soil moisture layer 1 (SM1)

Correlations (SM1, T2m) Correlation (SM1, Q2m)
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 State-pert weakens
the ST1, T2m
correlations
(atmosphere Is
driving the land/
atmosphere
coupling)

Param-pert
experiment again
generally strengthens
the correlations

Q"/ Physical Sciences Laboratory

Nighttime

Daytime

1.00

0.75 -
0.50 -
0.25 -
0.00 -
—0.25 -
—0.50 -
—0.75 -

—1.00

1.00

0.75 1
0.50 -
0.25 -
0.00 -
—0.25 -
—0.50 -
—0.75 -

—1.00

Correlations (ST1, T2m)

a) ensemble correlation(ST1,T2m), HOO

N

—e— control
—eo— State-pert
—e— sppt-pert
—e— param-pert

0.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8
c) ensemble correlation(ST1,T2m), H12

ﬂ

—e— control
—eo— State-pert
—e— sppt-pert
—e— param-pert

0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8
SWI

1.00

0.75 -
0.50 -
0.25 -
0.00 -
—0.25 -
—0.50 -
—0.75 -

1.00

0.75 1
0.50 -
0.25
0.00 -
—0.25 -
—0.50 -
—0.75 -

Ensemble land/atmosphere correlations, soil temperature layer 1 (ST1)

Correlation (ST1, Q2m)
b) ensemble correlation(ST1,Q2m), HOO

—e— control
—e— state-pert

—eo— sppt-pert
—e— param-pert

.00 ! ! ! 1 T T T T T
0.0 01 0.2 0.3 04 05 0.6 0.7 0.8

d) ensemble correlation(ST1,Q2m), H12

—e— control
—eo— state-pert
—e— sppt-pert
—e— param-pert

S

1.00 ! ! ! I T T T T T
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8

SWI




Forecast Experiments at EMC
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- Based on these experiments, colleagues at EMC tested perturbing
vegetation fraction, roughness length, and albedo in longer forecast
experiments (16 cases over a Boreal summer)

 Limited impact on atmospheric spread and RMSE metrics (expected)

» The land perturbations enhances pre-existing warm bias over Sahara
(traced to roughness length perturbation) C/o - Bing Fu, Hong Guan, Yuejian Zhu
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Summary and Conclusions (1)

» NCEP’s GFS (and other) NWP ensemble system is under-dispersed at and
near the land surface

* Need to explicitly account for land model uncertainty when generating the
ensembles

- Land and atmosphere have very different dynamics, and different error
growth behavior, cannot simply extend atmospheric methods

» For coupled data assimilation, cross-component correlations are very
iImportant

» Perturbation methods targeting only one component will overestimate
(underestimate) forecast error correlations where that (the other)
component is driving the coupling
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Summary and Conclusions (2)

» For NCEP’s GFSv16 NWP system, best results obtained by perturbing model parameters important
to land/atmosphere fluxes
» For land/atmosphere data assimilation, this directly targets fluxes between the components,
creating error cross-covariances representative of errors in those fluxes
» For applications interested in forecast uncertainty, generates more realistic spatial patterns in
uncertainty than other methods

» Work presented today was with Noah land model, working on implementing a similar scheme for
Noah-MP (code is in place, but struggling to create perturbations that don’t induce excessive
spread in soil temperature)

» However (!), land model physics are highly non-linear; introduction of a land perturbation scheme will
almost certainly change the ensemble mean land states
- Difficult to evaluate mean land states (soil moisture!), and land/atmosphere models are instead
tuned to give best atmospheric results from the model’s mean state
- Changes to the mean require re-tuning the ensemble, may not be feasible
- May need to limit spread induced in land surface to avoid impractical changes in ensemble mean
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Thanks for Listening

clara.draper@noaa.gov

Full detalls:

Draper, C., 2021: Accounting for Land Model Uncertainty in Numerical Weather
Prediction Ensemble Systems: Toward Ensemble-Based Coupled Land—Atmosphere
Data Assimilation. J. Hydrometeor., 22, 2089-2104, https://doi.org/10.1175/JHM-
D-21-0016.1.
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Typical Offline
Ensemble Spread

a) PreC|p ensemble spread, offline [mm/day]

Operational GFS
Ensemble Spread

b) PreC|p ensemble spread coupled [mm/day]
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Atmospheric Forcing
Uncertainty

Left: example uncertainty estimates as used
in a typical offline land DA system (perturb a
single atmospheric realization using perts.
drawn from best estimate of the error
distribution)

Right: example uncertainty estimates from
the GFS ensemble (estimates from ensemble
of GFS forecasts)

Atmospheric forcing spread in GFS likely
under-estimates forecast error in radiation

Full GFS ensemble produces more realistic
spatial error structure
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Summary and Conclusions (2)

- Offline (land-only) ensemble-based DA systems, recommendations:
* Replace current method of regularly perturbing model states, as creates unrealistic spatial patterns

» Use atmospheric ensemble forcing, in place of perturbing a single atmospheric realization
... or for atmospheric systems, do the DA within the atmospheric ensemble

» Coupled data assimilation, recommendations:

» Use ensemble perturbation approaches that directly target fluxes between the components, to create error
cross-covariances representative of errors in those fluxes

 Perturbation methods targeting only one component will overestimate (underestimate) forecast error
correlations where that (the other) component is driving the coupling

* NCEP’s GFS NWP system:

» Applying the parameter perturbation approach (expanded to perturb veq. fraction, roughness height, and
albedos)

» Developing EnKF DA of 2m variables to update model soil moisture and temperature
(for now, focus on soil temperature only, due to soil moisture / T2m model error)

 Looking into impact on ensemble mean and skill (EMC colleagues)
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