Noah-MP Component Model

Noah-MP Land Surface Model Tutorial: Model Physics, Code Structures, and Simulation Exercises

Ufuk Turuncoglu¹ & Michael Barlage² (1) NCAR/CGD/CSEG/ESMF (2) NOAA EMC/UFS Land Working Group Co-lead

Jan 27, 2024

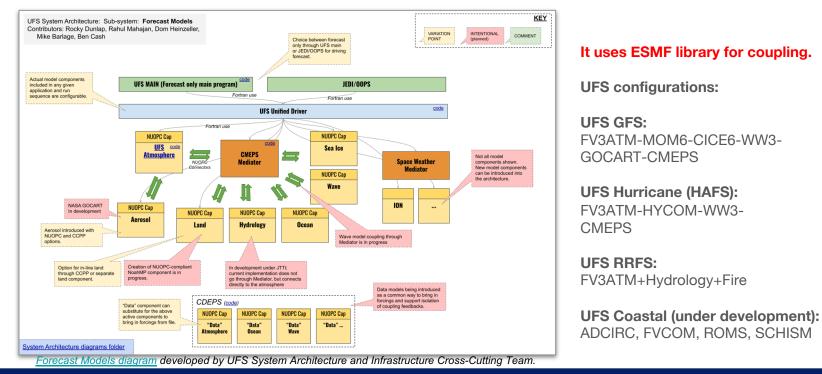
Outline

- Introduction
 - General information about UFS Weather Model and land coupling
 - CCPP Physics (sub-grid scale parametrizations)
 - Coupling infrastructure in general
 - Details of land component (Noah-MP) and coupling
- Hand zone session
 - Running data atmosphere forced configuration using Docker container

Project Goals and Objectives

• The project will deliver **new land modeling infrastructure** software that enables running component-based land surface models (LSMs) within the UFS.

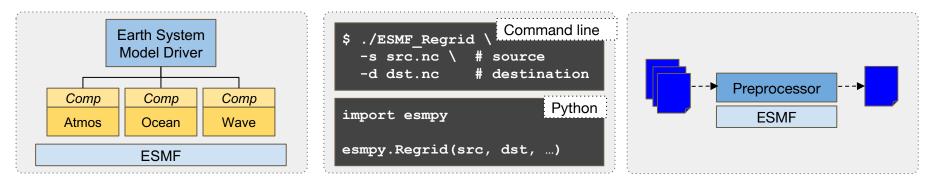
Project Title: "Advancing Land Modeling Infrastructure in the UFS for Hierarchical Model Development"
 PIs: Ufuk Turuncoglu (old PIs Rocky Dunlap and Mariana Vertenstein)
 EMC Collaborator: Mike Barlage
 Funded by FY21 Joint Technology Transfer Initiative (JTTI) Program - July 2024


Obj 1	The Noah-MP parameterization will be "wrapped" as a NUOPC-based model component, and will be demonstrated to run as an independent component under the UFS Driver in different configurations.
Obj 2	The Noah-MP component will be configured to run "one-way coupled" with atmospheric forcings provided by the Community Data Models for Earth Prediction Systems (CDEPS).
Obj 3	The Noah-MP component will be configured to run "two-way coupled" to the active atmosphere model through the Community Mediator for Earth Prediction Systems (CMEPS).

Funding

NOAA's Unified Forecast System

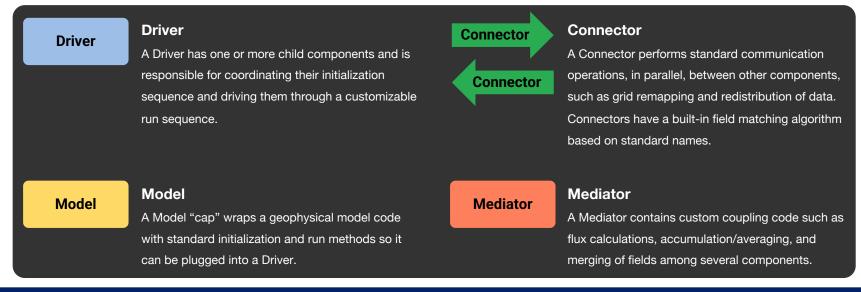
• The UFS is a community-based, coupled, comprehensive Earth modeling system.



UFS Weather Model

ESMF

- The Earth System Modeling Framework (ESMF) is parallelizable high-performance software infrastructure used in coupled Earth science applications.
- It is open source software: https://github.com/esmf-org/esmf
- Different ways to use ESMF?


Coupling infrastructure in a modeling system (includes the NUOPC Layer) **Offline tool for grid remapping** and **interpolation weight generation** (command line and Python) Library used to construct custom tools, such as preprocessor coprocessing and postprocessor

Coupling Infrastructure

NUOPC Layer

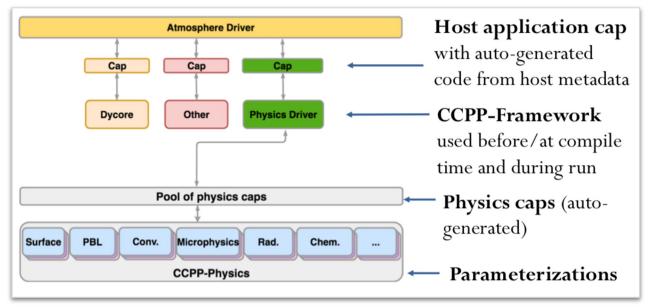
- The National Unified Operational Prediction Capability (NUOPC) is a software layer on top of ESMF that provides "out of the box" capabilities for constructing coupled models.
- Noah-MP under UFS Weather Model is one of the such components



Coupling Infrastructure

FV3ATM - Atmospheric Component of NOAA's UFS

- Sub-components of <u>FV3ATM</u>
 - FV3: Finite-Volume Cubed-Sphere Dynamical Core
 - The Common Community Physics Package (CCPP)
 - Framework and Physics
 - Defines sub-grid scale parametrizations
 - UFS stochastic physics
 - Async I/O
 - Coupling interface (ESMF/NUOPC)
- We will use C96 (~1deg.) resolution of global configuration in this short course



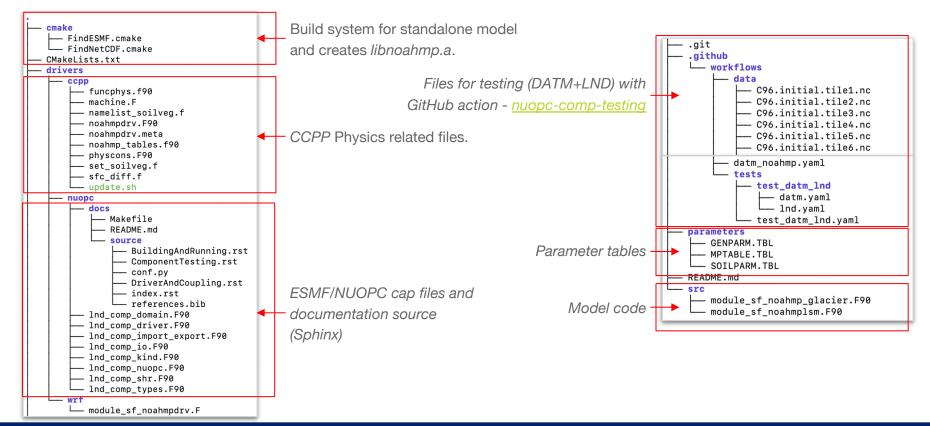
Model Component / ATM

CCPP - The Common Community Physics Package

 There are two distinct parts to the CCPP: a library of physical parameterizations (CCPP-Physics) that conforms to selected standards and an infrastructure (CCPP-Framework) that enables connecting the physics to a host model.

Model Component / ATM

Noah-MP - Land Component of NOAA's UFS


- The component model uses old version of code (same one found in FV3ATM CCPP Physics)
- Since Noah-MP does not provide capability to run standalone. It requires a driver layer such as HRLDAS or CCPP/Physics Driver.

ESMF/NUOPC cap NOAHMP-interface/noahmp/drivers/nuopc/ <i>"cap" files</i>	 NUOPC "cap" layer 1) provides functionality to interact with other components 2) domain creation 3) multi-tile I/O 4) namelist support
CCPP/Physics Driver NOAHMP-interface/noahmp/drivers/ccpp/ noahmpdrv.F90	driver layer 1) prepares variables for model 2) loops through 1d grid points
Noah-MP Model NOAHMP-interface/noahmp/src module_sf_noahmp_glacier.F90 module_sf_noahmplsm.F90	model layer 1) model functionality

Model Component / LND

Code Structure

Noah-MP Component Model

Import Fields for DATM+LND

Noah-MP can be forced with data atmosphere: <u>GSWP3</u> or <u>ERA5</u>

Std. Name	Alias	Unit	Receiver
Sa_z	inst_height_lowest	m	Ind
Sa_tbot	inst_temp_height_lowest	к	Ind
Sa_pslv	inst_pres_height_surface	Pa	Ind
Sa_pbot	inst_pres_height_lowest	Pa	Ind
Sa_shum	inst_spec_humid_height_lowest	kg kg-1	Ind
Sa_u	inst_zonal_wind_height_lowest	m s-1	Ind
Sa_v	inst_merid_wind_height_lowest	m s-1	Ind
Sa_wspd	inst_wind_speed_height_lowest	m s-1	Ind
Faxa_swdn	mean_down_sw_flx	W m-2	Ind
Faxa_lwdn	mean_down_lw_flx	W m-2	Ind
Faxa_rain	mean prec rate	kg m-2 s-1	Ind

- There is no any limitation to use other data atmosphere modes supported by CDEPS such as CFSR, GFS, CFS etc.
- The default interpolation type is defined in CMEPS mediator. In this case, 1st Order Conservative interpolation is used for active model coupling and 1st Order Conservative (with nearest-neighbour) for coupling with data components.

Import

Import/Export Fields for FV3ATM+LND

• Note: side-by-side configuration does not send fields to FV3ATM (*cplInd2atm* = .false.)

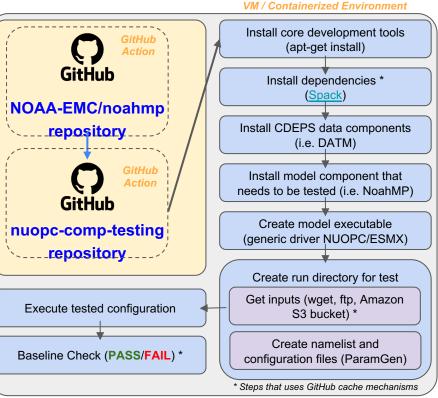
Std. Name	Alias	Unit	Receiver
Sa_z	inst_height_lowest	m	Ind
Sa_ta	inst_temp_height_lowest_from_phys	к	Ind
Sa_pslv	inst_pres_height_surface	Pa	Ind
Sa_qa	inst_spec_humid_height_lowest_from_phys	kg kg-1	Ind
Sa_ua	inst_zonal_wind_height_lowest_from_phys	m s-1	Ind
Sa_va	inst_merid_wind_height_lowest_from_phys	m s-1	Ind
Faxa_swdn	mean_down_sw_flx	W m-2	Ind
Faxa_lwdn	mean_down_lw_flx	W m-2	Ind
Faxa_swnet	mean_net_sw_flx	W m-2	Ind
Faxa_rain	mean_prec_rate	kg m-2 s-1	Ind
Sa_prsl	inst_pres_height_lowest_from_phys	Pa	Ind
vfrac		0-1	Ind
Faxa_snow	mean_fprec_rate	kg m-2 s-1	Ind
Faxa_rainc	mean_prec_rate_conv	kg m-2 s-1	Ind
Sa_tskn	inst_temp_height_surface	к	Ind
Sa_exner	inst_exner_function_height_lowest	0-1	Ind
Sa_ustar	surface_friction_velocity	m s-1	Ind
zorl		cm	Ind

Std. Name	Alias	Unit	Receive
SI_lfrac	land_fraction	0-1	mediator
Fall_lat	mean_laten_heat_flx_Ind	kg kg-1 m s-1	atm
Fall_sen	mean_sensi_heat_flx_Ind	K m s-1	atm
Fall_evap	mean_potential_laten_heat_flx_Ind	W m-2	atm
Fall_gflx	mean_upward_heat_flux_Ind	W m-2	atm
Fall_roff	mean_runoff_rate_Ind	kg m-2 s-1	atm
Fall_soff	mean_subsurface_runoff_rate_Ind	kg m-2 s-1	atm
SI_sfrac	mean_snow_area_fraction_Ind	0-1	atm
SI_tref	inst_temp_height2m_Ind	к	atm
SI_qref	inst_spec_humid_height2m_Ind	kg kg-1	atm
SI_q	inst_spec_humid_Ind	kg kg-1	atm
SI_cmm	inst_drag_wind_speed_for_momentum	m s-1	atm
SI_chh	inst_drag_mass_flux_for_heat_and_moisture	kg m-2 s-1	atm
SI_zvfun	inst_func_of_roughness_length_and_vfrac	0-1	atm

Namelist Options

• Noah-MP configuration parameters: *ufs.configure* and in *LND_attributes::* group

Option	Description	Possible Values	
mosaic_file	The path and name of the mosaic grid file	any, INPUT/C96_mosaic.nc	
input_dir	The directory that stores initial conditions, static information and grid related files	any	
ic_type	Indicates the source of the initial conditions (custom - C96.initial.tile[1-6].nc and sfc - sfc_data.tile[1-6].nc)	custom, sfc (default)	
layout	Defines decompositions in each direction on each tile (i.e. 3:8 for C96).	any number pair separated with double column	
num_soil_levels	Number of soil levels used by NoahMP Land Model	any number	
forcing_height	Height of the atmospheric forcing in meters. Used to overwrite component provided one.	any number	
soil_level_thickness	Thickness of the soil levels. Needs to be consistent with num_soil_levels	Any list of number separated with double column	
soil_level_nodes	Depths of the node points for each soil level.Needs to be consistent with num_soil_levels	Any list of number separated with double column	
dynamic_vegetation_option	Options for dynamic vegetation	1 (off), 2 (on)	
canopy_stomatal_resistance_option	Canopy stomatal resistance	1 (ball-berry), 2 (jarvis)	
soil_wetness_option	Options for soil moisture factor for stomatal resistance	1 (noah), 2 (clm), 3 (ssib)	
runoff_option	Options for runoff and groundwater	1 (simgm), 2 (simtop), 3 (schaake96), 4 (bats)	
surface_exchange_option	Options for surface layer drag coefficient (ch and cm)	1 (m-o),2 (chen97)	
supercooled_soilwater_option	Options for supercooled liquid water	1(ny06), 2 (koren99)	
frozen_soil_adjust_option	Options for frozen soil permeability	1 (ny06), 2 (koren99)	
radiative_transfer_option	Options for radiation transfer	1 (gap=f(3d,cosz), 2 (gap=0), 3 (gap=1-fveg)	
snow_albedo_option	Options for snow surface albedo	1 (bats), 2 (class)	
precip_partition_option	Options for rainfall & snowfall	1 (jordan91), 2 (bats), 3 (noah)	Additional configuration
soil_temp_lower_bdy_option	Options for lower boundary of soil temperature	1 (zero-flux), 2 (noah)	
soil_temp_time_scheme_option	Options for surface resistance	1->sakaguchi/zeng; 2->seller; 3->mod sellers; 4->1+snow	options in FV3 side:
glacier_option	Options for glacier treatment (fixed to 2 in noahmpdrv)	(1->phase change; 2->simple)	
output_freq	Options for output frequency in seconds	any number	
restart_freq	Options for restatr frequency in seconds (negative for disabling)	any number	<i>input.nml</i> and
do_mynnedmf	Option for MYNN-EDMF (default is false)	true or false	of a physical production
do_mynnsfclay	Option for MYNN surface layer scheme (default is false)	true or false	gfs_physics_nml section
soil_type_category	Option for soil type	0 (Zobler - 9 category), 1 (STATSGO - 19 category), 2 (STAS-RUC - 19 category)	
veg_type_category	Option for source of vegetation data	0 (USGS), 1 (IGBP), 2 (UMD), 3 (NLCD40), 4 (USGS-RUC), 5 (MODI-RUC)	cplind - atm->ind
initial_emiss	Option for initial surface lw emissivity in fraction (default value is 0.95)	any number between 0-1	
initial_albedo	Option for initial mean surface albedo (value is default 0.2)	any number between 0-1	
has_export	Option to enable export fields (default value is true)	true or false	cplind2atm - Ind->atm
calc_snet	Option to calculate shortwave radiation internally (default value is false)	true or false	



CI/CD Testing

It runs very simple DATM+Noah-MP configuration in every push or PR to Noah-MP repository

Low-resolution GSWP3 forced C96 (~1°global) land configuration

Check results against the baseline to find possible and unexpected baseline changes

<u>ttps://github.com/esmf-org/nuopc-comp-testing</u>

Limitations

- Only tested with global cubed-sphere grid
 - grid_spec.nc and oro_data.tile*.nc files are used to define the global domain, mask information and land fraction.
 - It requires additional work to support regional domains
 - single tile regional FV3 configurations
 - Regular lat-lon grids (global and regional) can be also supported by reading in ESMF mesh file but this requires additional development and testing
- I/O layer also needs to be extended to work with other grids and configurations
 - Current implementation uses ESMF for I/O (based on <u>PIO2</u> library)
- Need to develop a set of tools to generate input files that store static information and initial conditions for other grid types and regional applications

Supported Configurations

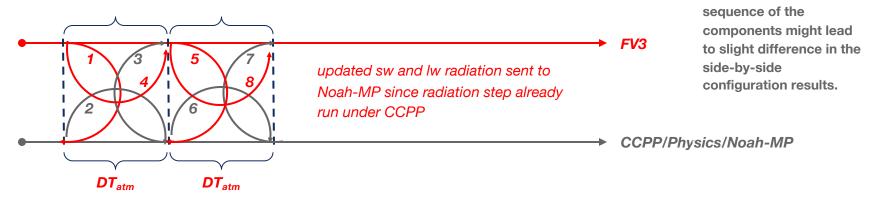
- *DATM+LND* (incl. restart capability)
 - Tested with GSWP3 and ERA5 forcing provided by CDEPS data component
 - The model can be forced with different focings using CDEPS
 - The model can be even forced with cyclic data
- FV3ATM+LND side-by-side configuration (no feedback from land to atmosphere)
 - FV3ATM/CCPP/Noah-MP also runs
 - Aims to validate the results coming from component model using CCPP version
- *FV3ATM+LND fully coupled* (incl. restart capability)
 - Fully active atmosphere coupled two-way with land component
 - Supports also running land component in higher resolution such as C384 (~0.25°global)

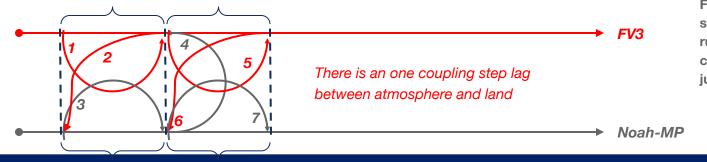
CCPP Suite File and Run Sequence

FV3/ccpp/suites/suite_FV3_GFS_v17_p8.xml				
<scheme>GFS_suite_interstitial_2</scheme>				
Surface iteration loop				
<s<u>ubcycle loop="2"></s<u>				
<scheme>sfc_diff</scheme>				
<pre><scheme>GFS_surface_loop_control_part1</scheme></pre>				
<scheme>sfc_nst_pre</scheme>				
<scheme>sfc_nst</scheme>				
<pre><scheme>sfc_nst_post</scheme> skips if cpllnd2atm = .true.</pre>				
$<$ scheme>noahmpdrv \rightarrow runs if cpllnd2atm = .true.				
<scheme>stc_land</scheme>				
<scheme>sfc_sice</scheme>				
<scheme>GFS_surface_loop_control_part2</scheme>				
End of surface iteration loop				
<subcycle loop="1"></subcycle>				
<scheme>GFS_surface_composites_post</scheme>				

merges fluxes for fractional grid

ufs.configure

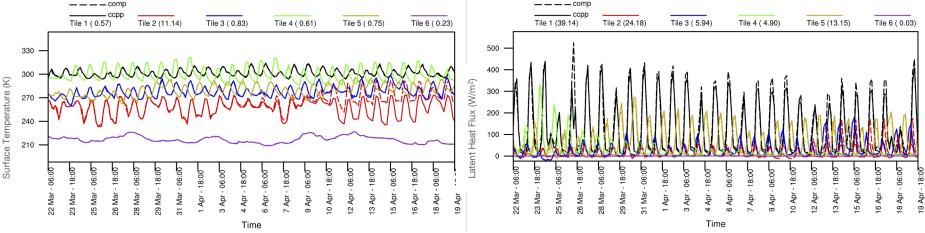

	_
# cold	
runSeq:	:
03600	coupling interval in sec
MED	med_phases_prep_atm
MED	<pre>-> ATM :remapMethod=redist</pre>
ATM	
ATM	<pre>-> MED :remapMethod=redist</pre>
MED	med_phases_post_atm
MED	med_phases_prep_lnd
MED	-> LND :remapMethod=redist
LND	
LND	<pre>-> MED :remapMethod=redist</pre>
MED	med_phases_post_lnd
	med_phases_restart_write
MED	med_phases_history_write
0	
::	


Run Sequence: CCPP vs. Component

• Standalone atmosphere with CCPP/Physics Noah-MP

NCAR UCAR

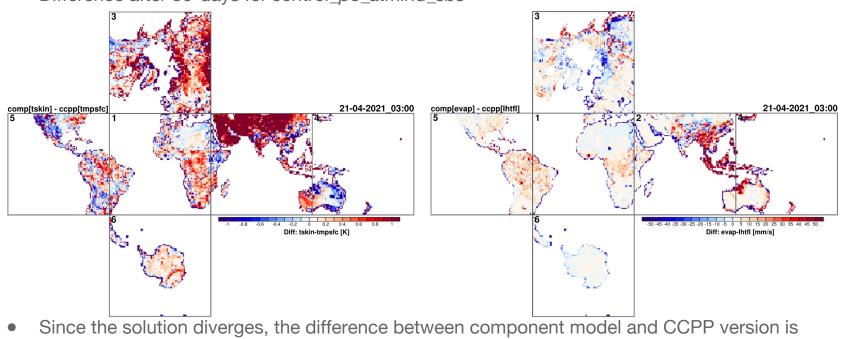
Coupled atmosphere-land configuration with component Noah-MP



The only way to mimic FV3/CCPP way, is splitting the CCPP suite run phases, and allow calling component model just after radiation step.

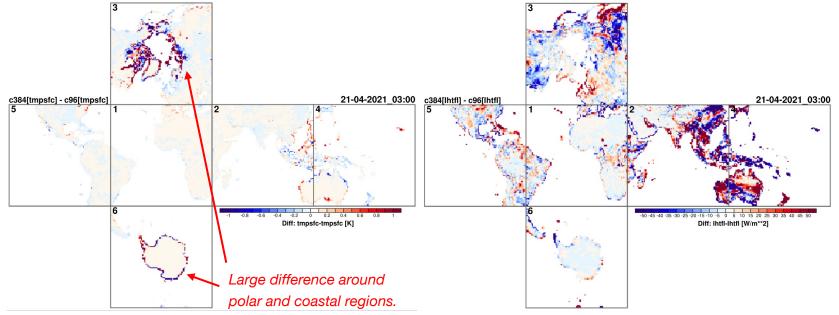
The difference in run

Validation


- A set of 30 days run was performed with different configurations of the model
- Side-by-side comparison (control_p8_atmInd_sbs sfcf* vs. land output)

• The component version of the Noah-MP is able to reproduces the results of FV3/CCPP version. The solution start to diverge after couple of weeks (see tile 2 results)

Validation


Difference after 30-days for *control_p8_atmlnd_sbs*

relatively large at the end of the simulation (after 30 days).

Higher resolution land component?

- The fully coupled configuration *control_p8_atmlnd* is also run with two resolution.
- Following figure compares FV3ATM output of two runs after 30 days of simulation

Fully coupled configuration - C96 vs. C384 land

Hands-on

- Content:
 - https://github.com/uturuncoglu/tutorials/blob/main/AMS24 Tutorial UFS Noah-MP.ipynb

