

Current Status and Plan of KIM/Noah-MP Coupled Model

Korea Institute of Atmospheric Prediction Systems (KIAPS), Seoul, South Korea

Coupled Model Team

Myung-Seo Koo, Hyeon-Ju Gim, Mee-Hyun Cho, Jaeyoung Song

Coupled Data Assimilation Team

Yonghwan Kwon, Sanghee Jeon, Kyung-Hee Seol

Korean Integrated Model (KIM)

salinity sea ice freezing/melting

Extended-range forecast KIAPS phase I (2011~2019) Scale-aware physics New atmospheric model Limited-area model 0.9 0.8 0.7 • New spectral element dynamical core on cubed-sphere grid 0.6 New physics package and data assimilation system 0.5 Stretched grid 0.4 ocear • Deterministic medium-range weather forecast (~10 days) 0.3 → KIM has become operational since April 2020 0.2 Time HORIZONTAL RESOLUTION (km) **KIM coupled modeling system Physics KIAPS phase II (2020~2026)** Noah Noah-MP precipitation **Seamless and coupled model** radiative fluxes U/V/T/Q/Z at 1st layer turbulent fluxes • Scale-aware physics for variable resolution land skin temperature • Ensemble forecast at extended-range time scale (~30 days) runoff U/V/Z(1st layer) (MCT-based) Couple • Coupled atmosphere-surface model with chemistry process CMF WW3 → new KIM covering multiple scales in space and time ocean/sea-ice skin temperature sea ice concentration Charnock coeff. fresh water surface exchange coefficient **NEMO** sea ice transport SI3

Advanced land surface model for KIM

Noah-Multiparameterization (Noah-MP) LSM

• advanced version of research-based (WRF) and operational (UFS) Noah land surface model

→ portable and (still) cost-effective

Atm. boundary conditions Land surface soil-snow-vegetationblended: Vegetation-snow-soil are represented like a single surface. Canop air Surface layer \geq Land surface Soil laver Soil layer Second generation LSM Third generation LSM

CNoah-MP®

Noah-MP® Open-Source Community Land Surface Model. The 4 colors represents: Soil, Water, Vegetation, and Energy. The 4 big circle "C"s represent: Community, Collaborative, Comprehensive, Cutting-edge

* modified for KIM/Noah-MP

	Snow layer	Snow density	Canopy flux	Radiative transfer	•••
Noah	1 (blended)	fixed	No	No	•••
Noah-MP	Up to 3	Variable	М-О	Two stream	* * *

2021: Noah-MP V4.0.1

• LIS-based code

2022: Noah-MP V4.2/4.4

• WRF-based code

- No canopy heat storage
- Old CWPVT for evergreen broadleaf forest
- Constant snow albedo for glacier

2023: Noah-MP V5.0

- GitHub-based code
- Thermal roughness parameterization
- Option for snow albedo/conductivity/cover
- CLM-based table value for leaf albedo
- Refinement of soil conductivity
- Nitrogen foliage factor

Performance on medium-range weather forecast: 2021

					No	ortl	her	n ł	nen	nis	ph	ere			So	ut	her	n h	en	nisj	phe	ere					Т	ro	pic	S			
				1일	2일	3일	4일	5일	6일	7일	8일	9일	10일	1일	2일	3일	4일	5일	6일	7일	8일	9일	10일	1일	2일	3일	4일	5일	6일	7일	8일	9일	10일
T 1 2015	MSI D		RMSE	-	~	~	•	•	•	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	~	~	~	~	~	~	-	-	•
July 2017	WISLF		CCAF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(boreal summer)		100hDe	RMSE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	•	•	•	•	•	•
		TUUIPa	CCAF	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		250hDa	RMSE	-	-	•	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	•	-	-	-	-	-
Coopeter	tial baight	250NPa	CCAF	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Geopotei	itiai neight	FOOLD	RMSE	-	•	•	•	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-
		500nPa	CCAF	-	-	-	-	-	-	-	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•
		or oh De	RMSE	-	•	•	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	•	•	-	•	•	-	•	-
		850NPa	CCAF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	•	-	•	•	-	-	-
		100-0-	RMSE	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•
		TUUNPa	CCAF	-	-	-	-	-	-	-	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•
			RMSE	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T	,	250nPa	CCAF	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-
	emperature	FOOL D.	RMSE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		500hPa	CCAF	-	-	-	-	-	-	-	-	-	~	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	•
			RMSE	~	×	×	×	~	~	~	~	~	~	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	•
		850nPa	CCAF	-	-	-	•	•	•	-	•	~	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	•
Dolotiv	a humidity		RMSE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Kelauv	e numulty	/UUNPa	CCAF	-	-	-	-	-	-	•	•	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		100hPa	RMSE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	wind sneed	250hPa	RMSE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	wind speed	500hPa	RMSE	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		850hPa	RMSE	-	-	•	•	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	•	•	-	•	•	•	•	•

Compared to KIM/Noah, KIM/Noah-MP is worse ←

색상 범	례 (%)	구간 별	대표 식	백상													범례변	경 -10	0% ~ +	100%		_		
-100	-90	-80	-70	-60	-50	-40	-30	-20	-10	0	+10	+20	+30	+40	+50	+60	+70	+80	+90	+100	-) 1	bet	ter
아이콘	범례 기	준의 예	측성능(이비교다	H상보다	좋은 경우	우 양수(+)값																
E	비교값입	없음	* ~	-20%	~	~ -10%	6 💌	~ -39	- %	-3%	~ 3%		3% ~	^	10% ~	*	20% ~							

Performance on medium-range weather forecast: 2021 to 2023

				북	반구									낭	반구					L				2	도				
151	2%	311	49	5%	611	7일	811	911	10/22	111	211	32	41	5%	631	71	8%	911	10%	12	211	312	41	511	631	711	812	911	101
																				- I									
									-										•	÷ .									
																				÷ .			-						
									*											÷ .									
																				÷ .		-	-		•				
								-	-																				
																				· ·		-	-		•				
									-											÷ .									
•																				÷ .			-	•	•		•		•
																				÷ .									
																				÷ .									
																				÷ .									
																				÷.									
																				÷ .									
								٠	*											÷ .									
			-		-			-	-											÷ .									
								*	*											÷ .									
																				÷ .									
					•		•	-	-	-									~	- E									
																				÷ .									
																				÷.,									

→ Continuous improvement but still worse than KIM/Noah

Systematic difference: KIM/Noah-MP (2023) - KIM/Noah

→ insufficient turbulent surface fluxes and vertical mixing

Namelist for KIM/Noah-MP: 2024 update

Noah-MP Physics	Default (Noah-MP version 5.0)	KIM/Noah-MP	Date
OptDynamicVeg	4: Off (use table LeafAreaIndex; use maximum vegetation fraction)	42: Off (use table LeafAreaIndex; use land use)	2024.06
OptRainSnowPartition	1: Jordan (1991) scheme		
OptSoilWaterTranspiration	1: Noah (soil moisture) (Ek et al., 2003)		
OptGroundResistanceEvap	1: Sakaguchi and Zeng (2009) scheme		
OptSurfaceDrag	1: Monin-Obukhov (M-O) similarity theory (Brutsaert, 1982)		
OptStomataResistance	1: Ball-Berry scheme (Ball et al., 1987; Bonan, 1996)		
OptSnowAlbedo	1: BATS snow albedo (Dickinson et al., 1993)	2: CLASS snow albedo (Verseghy, 1991)	2023.11
OptCanopyRadiationTransfer	3: Two-stream applied to vegetated fraction (gap=1-VegFrac) Dickinson, 1983; Sellers, 1985)		
OptSnowSoilTempTime	1: Semi-implicit; flux top boundary condition (Niu et al., 2011)		
OptSnowThermConduct	1: Stieglitz scheme (Yen, 1965)	 Verseghy (1991) scheme Constant 	2023.11 2024.06
OptSoilTemperatureBottom	2: TemperatureSoilBottom at DepthSoilTempBottom (8m) (original Noah; Ek et al., 2003)		
OptSoilSupercoolWater	1: No iteration (Niu and Yang, 2006)		
OptRunoff(Sub)Surface	3: Schaake scheme (original Noah) (Schaake et al., 1996)		
OptSoilPermeabilityFrozen	1: Linear effects, more permeable (Niu and Yang, 2006)		
OptDynVicInfiltration	1: Philip scheme (Liang and Xie, 2003)		
OptTileDrainage	0: No tile drainage		
OptIrrigation	0: No irrigation		
OptIrrigationMethod	0: Method based on geo_em fractions		
OptCropModel	0: No crop model		
OptSoilProperty	1: Use input dominant soil texture		
OptPedotransfer	1: Saxton and Rawls (2006) scheme		
OptGlacierTreatment	1: Include phase change of glacier ice	2: Glacier ice treatment more like original Noah	2022.11
OptCanopyHeatCapacity	1: On	0: Off (HeatCapacCan = 0.0)	2022.11
OptCWPVT_EBF	0.67 for evergreen broadleaf forest	0.18 for evergreen broadleaf forecast	2022.11
OptSnowAlbedoGlacier	=OptSnowAlbedo	0.82	2022.11
OptEmissivityBare	0.97	0.90	
OptSoilColor	constant(=4)	CLM-based data	2023.07
OptNitrogenFoliage	1: On (NitrogenFoliageFac = $1/1.5$)	0: Off (NitrogenFoliageFac =1.0)	2023.07
OptVCMX25	default table value	CLM-based table value	2023.07
OptZ0T	z0t=z0m	z0t=z0m	2023.11
OptSnowFraction	1: Niu07	0: Noah (Ek et al., 2003)	2023.11
OptSoilCond	default scheme	Refinement for coarse soil	2023.11
OptLeafReflectance	default table value	CLM-based table value	2023.11
OptRoughness	default table value	Trigo et al. (2015)-based table value	2024.06
OptGreenVegFrac	=VegFrac	CLM-based parameterization	2024.06

→ newly made for KIM/Noah-MP

KIM/Noah

 Atmosphere model calculates surface layer and surface radiometric properties, and conveyed them to Noah

KIM/Noah-MP (old)

 Atmosphere model and Noah-MP both calculate surface layer and surface radiometric properties, so they are duplicated with different values

KIM/Noah-MP (new)

• Noah-MP is the only model calculating surface layer and surface radiometric properties, and it convey to Atmosphere model.

[2024 update] Roughness length for momentum

1

9

	Land use (Modified IGBP-MODIS)	Noah	Noah-MP	Trigo et al. (2015)
1	evergreen needleleaf forest	0.50	1.09	2.00
2	evergreen broadleaf forest	0.50	1.10	2.00
3	deciduous needleleaf forest	0.50	0.85	2.00
4	deciduous broadleaf forest	0.50	0.80	2.00
5	mixed Forests	0.20 ~ 0.50	0.80	2.00
6	closed Shrublands	0.01 ~ 0.05	0.20	0.37
7	open Shrublands	0.01 ~ 0.06	0	.06
8	woody Savannas	0.01 ~ 0.05	0	.60
9	savannas	0.15	0	.50
10	grasslands	0.10 ~ 0.12	0.12	0.20
11	permanent wetlands	0.3	30	0.83
12	croplands	0.05 ~ 0.15	0.15	0.50
13	urban and built-up	0.50	1	.00
14	cropland/natural vegetation mosaic	0.05 ~ 0.14	0	.14
15	snow and ice	0.0	01	0.0013
16	barren or sparsely vegetated	0.0	01	0.013
17	water		0.0001	
18	wooded tundra	0.3	30	0.10
19	mixed tundra	0.15	0.20	0.034
20	barren tundra	0.05 ~ 0.10	0.03 (0.10)	0.034

* This modification has been done in response to the recent update in subgrid-scale orography (SSO) parameterization.

60E 90E 120E 150E 180 150W 120W 90W 60W 30W 0 30E 0

→ Reduction in the overestimated wind speed

[2024 update] New option for dynamic vegetation (and greenness)

OptDynamicVeg = $4 \rightarrow 32$

	Leaf Area Index (LAI)	Green Vegetation Fraction (GVF)	Vegetation Tile Fraction (VegFrac)
1	Table	Input data	
2	Prognostic	Calculated with	1 LAI
3	Table	Calculated with	I LAI
32	Table	Calculated with LAI	1 - BarrenTypeFrac
4*	Table	Input data (annual maxir	num; GVF _{max})
5	Prognostic	Input data	

Original Noah-MP version 5 (OptDynamicVeg=4; recommended)

New option for KIM/Noah-MP (OptDynamicVeg=31)

-0.3

90N

-0.5 850

925

1000

905

605

305

EQ

30N

60N

90N

850

925

1000

90S

60S

30S

EQ

30N

60N

cooling over vegetation w/ the enhanced vertical mixing
→ highly attributed to the new vegetation tile

90N

.0 3

-0.5 850

925

30S

EQ

30N

60N

850

925

1000

90S

EQ

30S

30N

60N

- reduction of the overestimated wind speed
- \rightarrow attributed to the vegetation tile and roughness length

Performance on medium-range weather forecast: Atmosphere (25km)

2023 (last year)

2021 (initial)

_				<u>ي</u>	반구									낭	반구									8	G.				_
192	211	311	410	511	610	711	410	911	10%	192	211	39	410	59	611	251	810	951	10/3/	112	251	39/	451	510	611	2%	811	911	107
										-																			
										-												•	•	•	•	•	•		
									•	-										· ·									
^	•																			· .			•	•	•	•	•		^
									•	÷									*	÷									
																				· .									
								•	•	÷										÷.,									
																				· .									
										÷.,										÷.,									
										÷.,										÷.,									
								٠	*											÷.,									
		-		-		-														÷.,									
							*													÷.,									
									•										~										

				북	반구									낭	한구			1						2	£.				
111	211	311	4%	511	611	711	811	9%	10월	19	211	311	4%	511	611	711	811	9%	1011	11	211	311	4%	511	411	711	811	921	10%
									1.1											÷.,							•		
																				· .									
			•																	· .			•	•	•	•	•	•	•
										÷.,										÷.,									
																				÷.,			•	•	•	•		•	-
									•											÷.									
										÷.,										÷.									
									1											÷.,									
																				· .									
									•											÷.,									
										÷.,										÷.									
																				· .									
																				÷.,									
																				÷.									
									1.1											÷.,									
									*	÷.,										÷.,									
																				· .									
								*		+										÷.									
										÷.,										÷.									
							•		•									•		÷.									
										÷.,									· ·	÷.									
									1											÷.									
																				· .									

 \rightarrow In general, skill scores are now neutral or better than KIM/Noah

Performance on seasonal simulation: 2-m temperature (50 km)

• similar spatial pattern **but still warmer (colder) over forest (snow)**?

20-year simulation (2001-2020): Arctic Oscillation (100 km)

- Stable integration for long-term period
- Similar pattern correlation but larger amplitude and variability ?

Weekly coupled data assimilation

Improvement of soil moisture DA

0.16 0.20

Degraded

Concluding remark

- ✓ **KIM/Noah-MP** has been **updated** with respect to
 - physical consistency with radiation (albedo, emissivity) and boundary layer (surface layer)
 - roughness length for momentum (enhanced to be comparable with IFS)
 - vegetation fraction (vegetation tile versus greenness)
 - snow physics (will be presented tomorrow)
- In comparison to KIM/Noah, the performance of the recent KIM/Noah-MP became neutral or slightly better on medium-range forecast skill as well as long-term simulation:
 - the systematic warm (cold) bias over vegetation (snow) was highly reduced.
 - the major improvement was attributed to the separation of vegetation tile and greenness, which needs to be considered in the community Noah-MP.
- ✓ In the future, KIM/Noah-MP will replace KIM/Noah, along with
 - LIS/Noah-MP land data assimilation system
 - more sophisticated physics (multi-layer canopy, irrigation, ...) and realistic data (LAI/SAI, canopy height, ...)

Thank you for listening

Performance on medium-range weather forecast: Surface (25 km)

2-m temperature against SYNOP (July 2017)

Noah Noah-MP

- Similar magnitude in bias and root-mean-squared error
- Slightly different in diurnal variation