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The LIS software suite
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LIS can run multiple LSMs, including:
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Noah-3.9 is maintained by Noah-MP-4.0.1 is maintained  JULES-5.0 is maintained by
NCAR; this version was taken by NCAR; includes numerous UKMO; PS41 (Parallel Suite
from the WRF-3.9 release. physics options, including for 41) configuration was used,
Noah has 1 snow layer groundwater. Noah-MP has which also uses 3 snow layer
physics. 3 snow layer physics. physics.



Global model configuration and forcing

3 LSMs (Noah-3.9, Noah-MP-4.0.1, and JULES-5.0) are each run on a global lat-lon
grid at ~10-km grid spacing (2560 x 1920 grid points), including glacial points.
The surface meteorological forcing used as forcing is a combination of NAFPA
(NASA — Air Force Precipitation Analysis) precipitation, meteorology from NWP
and surface observations, and WWMCA (World Wide Merged Cloud Analysis).

NAFPA (Kemp et al., 2022) uses a Bratseth analysis to combine L= @
precipitation from NWP as background with gauge reports and
satellite estimates to produce a high-quality real-time analysis.
NWP used until “mid-2017 is from the GFS; after, GALWEM
(USAF Global Air—Land Weather Exploitation Model) is used.
Data archives go back to Nov 2007. LSM soil state spin-ups
were done by looping through the forcing several times.
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Products assimilated (timeline)

* Snow products from USAF-SI (USAF Snow and Ice Analysis; Yoon et al., 2022)
and from (USAF’s Snow Depth Analysis Model) are assimilated.

e Soil moisture products from and from are assimilated
using CDF matching, with the observations scaled into the LSM’s climatology.

e Two simulations were performed for each LSM: One with data assimilation (DA)
of the above products, and one with no data assimilation (Open Loop = OL).
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Annual cycle with data assimilation (DA)

[volumetric]

Total Runoff [Runoff]
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Global (no ice points) area—average annual cycle 2008—-2021

Soil Moisture layer 1 [SoilMoist]
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Global (no ice points) area—average annual cycle 2008—-2021

Total Runoff

Noah-3.9
LIS=7.5 NRT
Noah-MP-4.0.1
LIS=7.5 NRT

Noah-3.9
LIS=7.5 NRT
Noah-MP-4.0.1
LIS=7.5 NRT

Noah-MP generally
higher than Noah.
JULES has a high
runoff peak in May,
likely from higher
NH winter SWE.

0-10cm soil moist.

Evapotranspiration [Evap]

Evapotranspiration

Noah-3.9
LIS=7.5 NRT
Noah-MP-4.0.1
LIS=7.5 NRT
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Global (no ice points) area—average annual cycle 2008—-2021

Snow water equivalent [SWE]

JULES tends to be
wetter in NH winter
and drier in NH
summer. Noah is
wetter on surface
than Noah-MP, but
drier in root zone
(not shown).
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Global (no ice points) area—average annual cycle 2008—-2021

Noah-3.9
LIS=7.5 NRT
Noah-MP-4.0.1
LIS=7.5 NRT

JULES has the
highest ET for all
months, while
Noah-MP has the
lowest ET. All LSMs
peak ET in July.

SWE (Snow water
equivalent)

JULES has a much
higher SWE in NH
winter. Noah-MP
has slightly more
SWE than Noah.




LVT and evaluation datasets

We used LVT to compare both DA and OL

simulated output against these evaluation

datasets:

* ISMN — International Soil Moisture
Network (https://ismn.earth/en/)

uncertainty diagnostics
Spatial scale analysis

siport orrontisdaa | ¢ JASNOW — Univ. of Arizona 4-km

gridded SWE and Snow Depth over
CONUS (d0i:10.5067/0GGPB220EX6A)
* GLEAM - Global Land Evaporation
The Land surface Verification Toolkit is a Amsterdam Model 0.25-deg. gridded
component of the LIS software framework
for model verification, evaluation, and
benchmarking. (Kumar et al., 2012)

evaporation (https://www.gleam.eu/)



https://ismn.earth/en/
https://www.gleam.eu/

DA comparison to in situ ISMN soil moisture

ISMN soil moisture
Daily anomaly correlation 2009-2021

Surface (0—10cm)
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Root Zone (0—100cm)
1349 sites

Noah-MP has the highest anomaly correlation (AC)
for root zone and 2"4 highest for surface SM. Noah
has the lowest AC for both layers, while JULES has a
higher AC for surface than it does for root zone.

ISMN soil moisture
Daily unbiased RMSE 2009-2021

0.077

Root Zone (0—100cm)
1349 sites

Surface (0—10cm)
1271 sites

0.062 0.062
58 0.057

Noah-MP has the lowest unbiased RMSE for both
layers, while JULES has a high RMSE for surface.
JULES tends to be “wetter when wet” and “drier
when dry” as compared to Noah and Noah-MP.




ISMIN AC difference (DA minus OL) — CONUS

JULES-5.0 Noah-3.9 Noah-MP-4.0.1
JULES—-5.0 surface soil moisture (0—10cm) ) Noah—3.9 surface soil moisture (0—10cm) ) Noah—MP—4.0.1 surface soil moisture (0—10cm)
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Difference in the anomaly correlation between the DA simulation and OL simulation
(both as compared to ISMN for 2009-2021).

Warm colors (from to red) show areas where there is improved correlation to
ISMN observations from data assimilation.
Cool colors (from to dark blue) show areas where the correlation is degraded

from data assimilation.



Comparison to SWE from UASNOW

JULES-5.0 Noah-3.9 Noah-MP-4.0.1

Univ. Arizona SWE — JULES-5.0 Univ. Arizona SWE — Noah-3.9 Univ. Arizona SWE — Noah—-MP—-4.0.1

Annual-average RMSE [mm]

Comparison to the Univ. of Arizona snow analysis for WY2008-WY2020 over CONUS.
Noah and Noah-MP have generally similar RMSE patterns, while JULES has higher
RMSE of SWE over the intermountain west and over the northern plains.

RMSE 46.8 mm 20.1 mm 20.8 mm

Bias 9.1 mm —7.0 mm —6.9 mm



Comparison to latent heat flux from GLEAM

JULES-5.0 Noah-3.9 Noah-MP-4.0.1

GLEAM Latent heat flux — JULES-5.0 GLEAM Latent heat flux — Noah—3.9
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Comparison to the GLEAM latent heat flux (LE) for 2009-2021. JULES has higher LE
than GLEAM for most areas and has only a few areas where its LE is less than GLEAM.
Noah-MP is generally closest to GLEAM LE, while Noah has somewhat higher LE.

RMSE 24.7 W m™2 18.6 W m™ 19.2 W m™
Bias 8.5W m™ 4.0 W m2 1.5 W m?2



Noah-MP-5.0 code integration

* NCAR has released version 5.0 of Noah-MP, with the code completely re-factored
(modernized) including detailed in-line and pdf documentation
* NASA/GSFC entered into a strategic partnership with NCAR to integrate this version
of Noah-MP into the LIS framework through linking of our Github repositories. This
will allow smoother/quicker integration of bug fixes and future Noah-MP versions
going forward.
e Other major deliverables of this work (to be completed by 30 June 2024):
* Benchmarking/testing LIS-Noah-MP results against Noah-MP outside of LIS
e Evaluate LIS-Noah-MP in global 557 WW domain as well as a regional domain against

observations (and Noah-MP-4.0.1) using the Land surface Verification Toolkit (LVT)
* |nvestigate/fix cold surface temperature biases in Noah-MP under snow cover



Miguez-Macho and Fan Scheme Overview

About Miguez-Macho and Fan et al. (2007) Scheme: 1 2 3
* Additional 2D Groundwater column exchange below Noah-MP
LSM A
e 2D Motion for a Gridpoint (see figure on right): v
as, . 8 Dsy/ 4
* —, = AxAyR+ Y50 — Qr «>dt <>
. Recharge + SUM(Lat. Flow - River Exchange) A
. Rive_r Exchange (Qrf) parameterized with exponential function 7 6 \1, 5
(valid at resolutions up to 4-km)
Extension to Higher Resolutions (with physical channel parameters):
 Based on coupled River Conductivity (RCOND)

e RCOND = length * width *
« QRF =RCOND * (WTD — RIVERSURFACE) * (dt/area)

* Noah-MP LSM coupled to LIS Hydrological Modeling and
Analysis Platform (HyMAP) routing model (Getirana et al. 2017).

e Preliminary tests show need for new MMF LSM parameters



Evaluate LIS Noah-MP v4.0.1 with four configurations:

Model Spin-Up and Evaluation:

Study area and experimental design

East River Basin Observation Sites

Control: Noah Original Surface and Sub-surface Shaake et al.
(1996)

Noah-MP MMF: Miguez-Macho and Fan et al. (2007) without
modifications or additional coupling

Noah-MP MMF HyMAP: Channel exfiltration from LIS-HyMAP
(Getirana et al. 2017) parameters

LIS-MMF 2-Way Coupling: Channel exfiltration/infiltration from
LIS-HYMAP (Getirana et al. 2017) coupled to MMF groundwater
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748 km”2 Drainage Area
Tijerina-Kreuzer et al. (2023) study basin
USGS Gages Available



Impacts of 2-way coupling on streamflow
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LIS w/o MMF (red) underestimates baseflow (common Noah-MP issue)

LIS-MMF original (orange) and LIS-MMF w/HyMAP channels

overestimate baseflow

Baseflow is more realistic with full 2-way coupling (blue), but is still high late in season
Reducing infiltration parameter (purple) somewhat reduces excess baseflow



NLDAS Phase 3

* NLDAS-3 will use only the Noah-MP-5.0 (or later) LSM with multi-variate land DA:

NLDAS-3 is a fine-scale North American surface meteorological and land-surface model dataset for retrospective and operational applications.
NLDAS-3 is essential for drought monitoring, critical to the agricultural sector.

2 356 710 1064 1418 1772 2126 2480 2834
Elevation (m)

*  NLDAS-3 covers all North America
including Alaska, Hawaii, Puerto
Rico and Central America

*  NLDAS-3 has a spatial resolution of
1 km and a temporal resolution of
an hour
NLDAS-3 aims to accelerate the

transition to operations and enhance
user and stakeholder engagement

G®DDARD

2. NLDAS-3 precipitation

4. NLDAS-3 land surface processes

NLDAS-3 enables a high spatiotemporal resolution of land surface
processes

1 E Developed within the NASA
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amount Near real-time: IMERG Early
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using LIS

Quality
Control
Daily amount
at 4-km

generated
using LIS

Optimal
Intespolation

NLDAS-3 uses advanced
optimal interpolation
techniques to blend well-
known and widely used
meteorological forcing:
NASA’s MERRA-2 and
IMERG and ECCC
Canada’s CaPA.

Observations (CaPA +IMERG)

CaPA: CFIA= 0.7 IMERG: if not within a 10-km radius of a
or latitude > 60°N CaPA observation with CFIA=0.7

Sclected Observations

= - Retraspective : MERRA-2
Background: MERRA-2 aily | Near peal-tine: GEOS-FP-IT

Precipitation Analysis daily 4 km
Temporal |

Disageregation [Precipitaion Analysis hourly 4 kan |
Downscaling Precipitation Analysis hourly 1 km

3. NLDAS-3 surface meteorology

MERRA-2 surface meteorology is downscaled to 1km
. Temperature adjustments are performed by using a dynamic lapse rate.

. Surface pressure and longwave down radiation are adjusted using a 1-km
surface topography following the NLDAS-2 methodology.

. Shortwave down radiation is downscaled using data from CERES/POWER.

Winds are adjusted using the MicroMet methodology, which uses values
of topographic slope, slope azimuth, and curvature.

1. A multinational collaboration

5. NLDAS-3

-5 Land Information System,
% NLDAS-3 will assimilate
remotely-sensed datasets of
soil moisture,
snow, vegetation, water
height, and terrestrial water
storage (SMAP, GRACE,
MODIS/VIIRS,
SWOT) to better constraint
land surface processes.
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Environment and
Ciimate Change Ganada
Emvironnament et

Changement clmatique Canaca

2. A multicenter effort

G®DDARD

investments (AIST)
4. An integration of

stakeholder requirements

and feedbacks

5. A bridge from mature
research to operations




NLDAS Phase 3

* NLDAS-3 stakeholder workshop for latest updates, sample data, and community
feedback will be held virtually on Monday July 29 from 1:00-3:00pm EDT.
* Please contact me to receive an invitation: David.Mocko@nasa.gov

Noah—MP—4.0.1 0—10cm soil moisture [m"3 m—3]

NLDAS-3 provides surface meteorology over North and Central America at 1km resolution 00Z 01 Aug 1980

Precipitation (mm/d)
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Summary and take-away messages

Snow (from SNODEP & USAF-SI) and soil moisture (from ASCAT SMOPS & SMAP)
products are assimilated into the LSMs, which were run from Nov 2007 to present.
Comparisons to in situ soil moisture from ISMN shows that Noah-MP generally has
the highest anomaly correlation (AC) and the lowest unbiased RMSE.

Noah and Noah-MP both perform overall well in simulating SWE over CONUS.
Noah-MP has the lowest bias of latent heat flux compared to the GLEAM product.
The NLDAS Phase 3 (NLDAS-3) system is being actively developed, which will have a
1-km grid spacing, including all of North and Central America, including Hawaii,
Alaska, and Puerto Rico

The Miguez-Macho and Fan scheme has been enabled with parallel computation in
the LIS system, and being used for groundwater and river channel studies.
Noah-MP in LIS includes land data assimilation of snow, soil moisture, GRACE, LAI



Websites and references

NAFPA (Kemp et al., 2022): https://doi.org/10.1175/JHM-D-21-0228.1
USAF-SI (Yoon et al., 2022): https://doi.org/10.1016/j.rse.2022.113080

LIS website: https://lis.gsfc.nasa.gov/

LIS (Kumar et al., 2006): https://doi.org/10.1016/j.envsoft.2005.07.004

LIS (Peters-Lidard et al., 2007): https://doi.org/10.1007/s11334-007-0028-x
LVT (Kumar et al., 2012): https://doi.org/10.5194/gmd-5-869-2012

Thank you!


https://doi.org/10.1175/JHM-D-21-0228.1
https://doi.org/10.1016/j.rse.2022.113080
https://lis.gsfc.nasa.gov/
https://doi.org/10.1016/j.envsoft.2005.07.004
https://doi.org/10.1007/s11334-007-0028-x
https://doi.org/10.5194/gmd-5-869-2012

Backup slides



ISMN AC difference (DA minus OL) — Global

JULES-5.0

Noah-3.9

Noah—3.9 surface soil moisture (0—10cm)

Noah-MP-4.0.1

Noah—MP—4.0.1 surface soil moisture (0—10cm)

JULES=5.0 surface soil moisture (0—10cm)
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Difference in the anomaly correlation between the DA simulation and OL simulation
(both as compared to ISMN for 2009-2021).

Warm colors (from

ISMIN observations from data assimilation.

Cool colors (from
from data assimilation.

to red) show areas where there is improved correlation to
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WY2016 21 Latent Heat ﬁ

East River MMF vs. Control Runoff (0.01 deg)
LIS-MMEF (WY2015-2021)
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WY2016 21 Exflltratlon

East River MMF; Impact of HyMAP Channels

LIS-MMF w/HyMAP 2-Way Coupling (WY2015-2021)
WY2016-21 WTD (m)
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