Low Temporal Variability in Noah-MP Simulated Groundwater
(findings based on WLDAS simulation runs)

Bailing Li, Jessica Erlingis, Matthew Rodell & Sujay Kumar

ESSIC UMD/NASA GSFC

Noah-MP Workshop Jun 3, 2024
Western Land Data Assimilation System (WLDAS):

- Noah-MP4.0.1
- NLDAS-2 forcing data
- Downscaled to 1 km using LIS capabilities
- Simple groundwater scheme
- Dynamic vegetation
- GRACE data assimilation using LIS/EnKS

Low groundwater variability in dry conditions
Impacts on drought identification

Groundwater drought percentile maps for Colorado based on different climatology

Climatology: open loop (1979-2022)

Climatology: GRACE DA (2002-2022)

Maps are based on groundwater estimates from GRACE data assimilation into Noah-MP
Impacts on configuring a Kalman filter

Dynamic system

Soil moisture & groundwater

P ET

Surface runoff

baseflow

recharge capillary rise

Aquifer

Less dynamic system

Stop perturbation

Ensemble spread

Unperturbed state

Difficult to control model errors
Root cause: weak capillary rise

Fluxes between unsaturated and saturated zone are calculated based on Darcy’s Law (Niu et al., 2007):

\[
Q = -K_a \frac{-z \nabla - (\psi_{\text{bot}} - z_{\text{bot}})}{z \nabla - z_{\text{bot}}}
\]

- Darcy’s Law is only applicable with dynamic states (soil moisture and hydraulic heads).
- Due to weak capillary rise, temporal variability of groundwater is mainly driven by recharge.

Diagram from Li et al., 2021. "Groundwater recharge estimated by land surface models: an evaluation in the conterminous U.S." J. of Hydrometeorolog, [https://doi.org/10.1175/JHM-D-20-0130.1]
Summary

1. Noah-MP simulates low groundwater variability in dry climate conditions.
2. Low temporal variability, especially lack of seasonality, affects drought identification and poses a challenge for ensemble-based data assimilation methods.
3. Weak capillary rise is the underlying cause for low variability and makes groundwater inaccessible to near surface processes (e.g., soil moisture and ET).