A Novel Downscaling Approach for Urban Climate: Land-Surface-Physics-Based Downscaling

Lingbo XUE

2024.06.03 Noah-MP Workshop (Online)

Co-author:

Quang-Van Doan (University of Tsukuba), Hiroyuki Kusaka (University of Tsukuba), Cenlin He (NCAR), Fei Chen (HKUST)

2024 Noah-MP[®] International Annual Users' Workshop

Jun. 3 to Jun. 4, 2024

8:30 am - 5:00 pm MDT

NCAR FOOTHILLS LAB (EOL-ATRIUM), BOULDER, USA AND HYBRID

1 Motivation, Purpose and Method

Motivation

What are cities?

- Population Centers
- Economic Hubs
- Innovation and Culture

Climate-related risks faced by cities

- Thermal stress
- Sea-level rise
- Tropical cyclones
- Storm surges
- Heavy rainfall

Tree Tokvo

Building City-Level

Climate Change Information

Targeted Responses:

Cities have unique climate risks and exposures

Support Decision Making:

Aids urban planning, public policy, and capacity to respond to climate change.

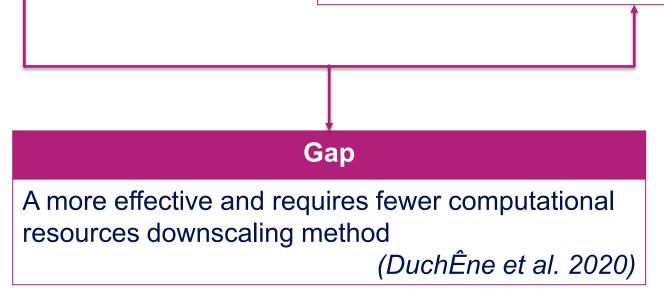
• Enhance Adaptation Capacity:

Understanding specific climate risks, reducing losses and damages from climate change.

(IPCC 6th Report)

Numerical Modeling Downscaling Approach

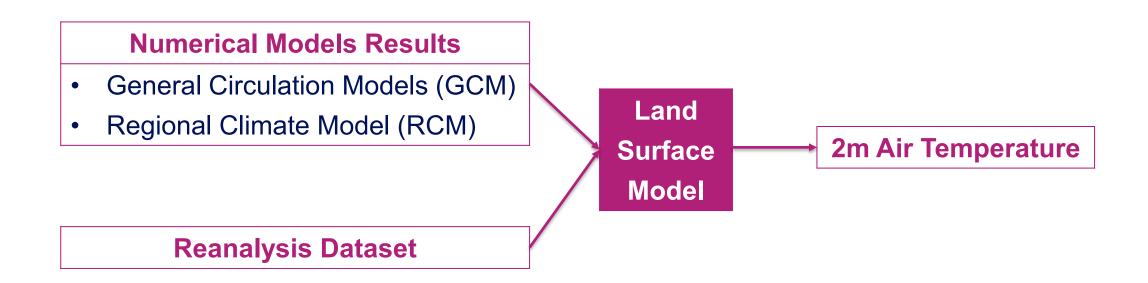
Dynamical Downscaling (D-DS)


(Hamdi et al. 2014)

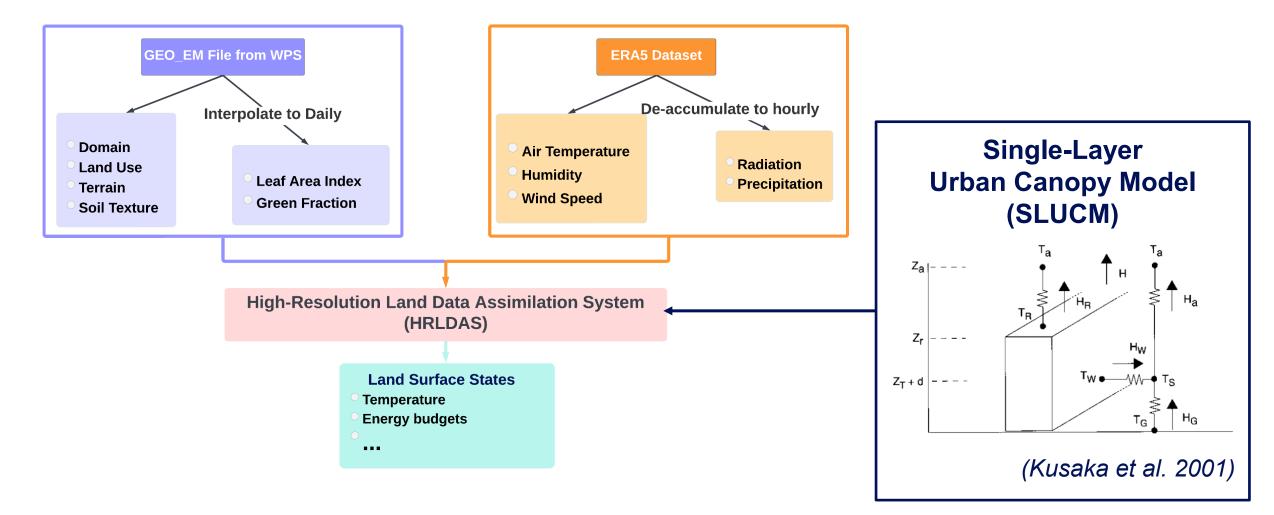
- Adequate city-atmosphere interactions
- Computationally too expensive
- Introducing more model biases

Statistical downscaling (S-DS)

(Hoffmann et al. 2012)


- Computationally very inexpensive
- Not considering physical processes
- Only for a few cities and fail to capture complex interactions

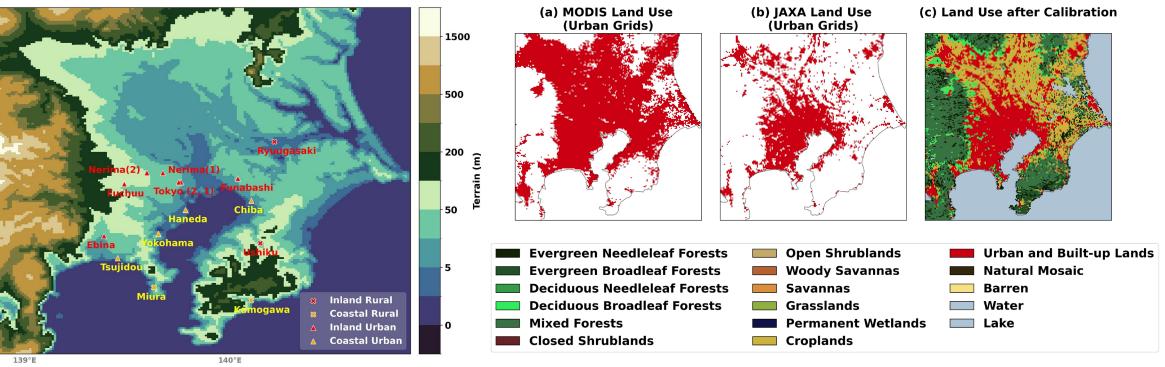
Purpose


Land-Surface-Physics-Based Downscaling (LSP-DS)

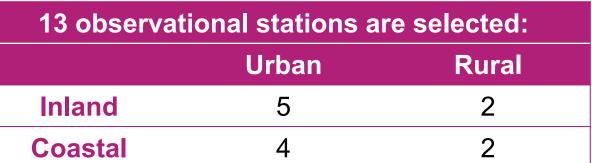
- Easy to gain insight
- Easy to do experiments
- Require fewer computational resources (~1 Hour for 1 month by PC)
- Can be widely used by policymakers

HRLDAS: Offline Driver of Noah-MP

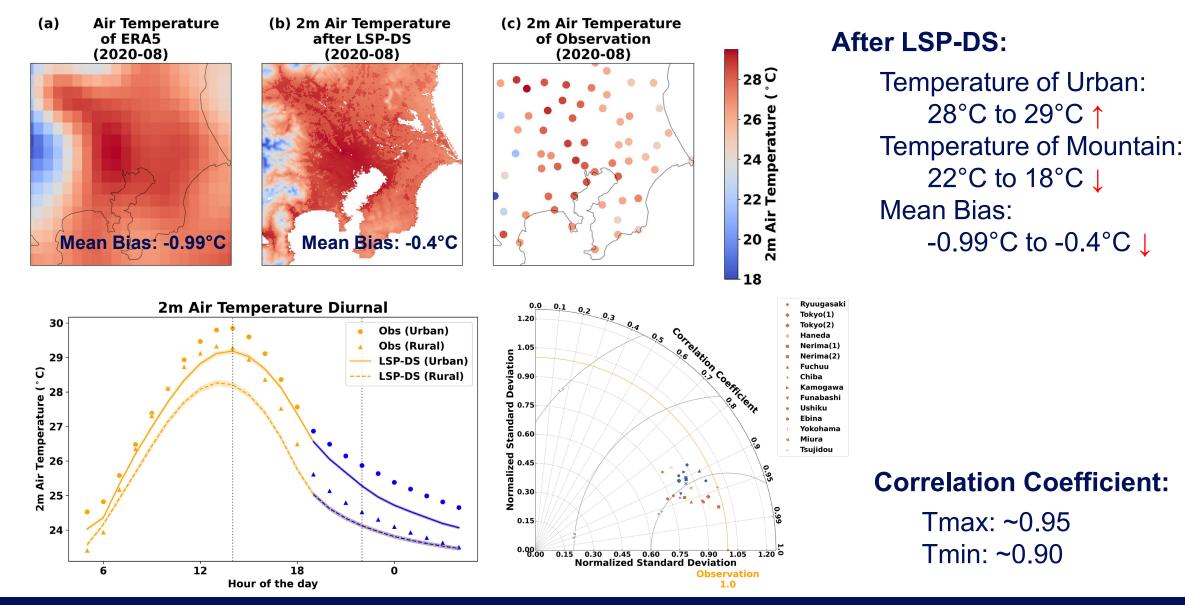
One of the most widely used land surface models in the world !



2 Research Plan


Research Plan

Terrain and Land Use


Domain Setting						
Grids	190*190					
Resolution	1 km					

MODIS shows a higher urban area !

2.1 Compare with Observational Data

Downscaled 2m Air Temperature

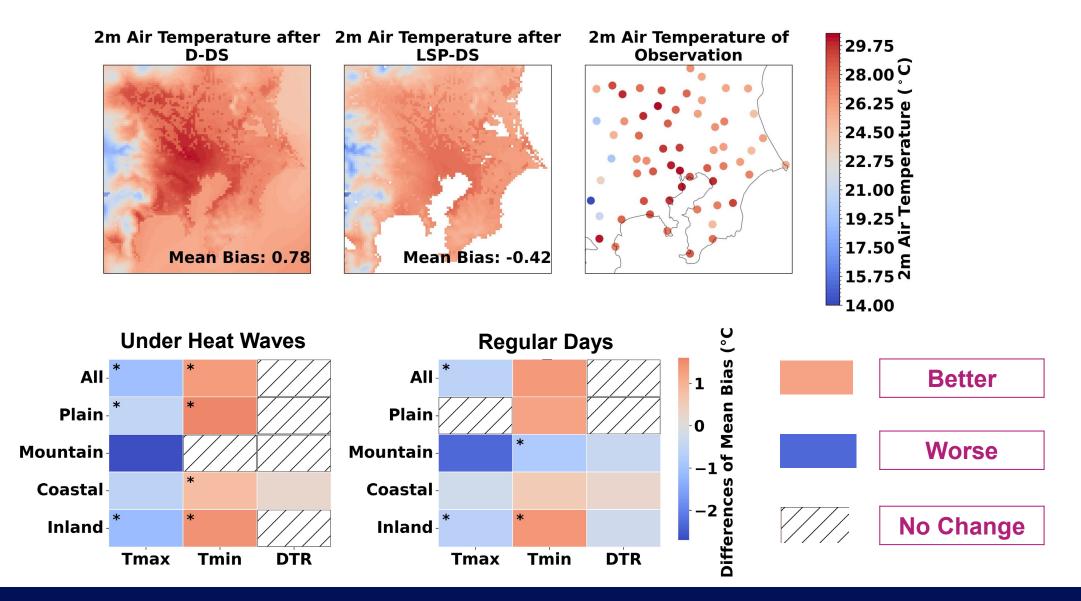
How Does Urban Heat Island Intensity Change Under Heat Waves?

Added Heat Load (AHL,

how much UHII changes under heat waves):

Daytime AHL (1400 local time) Nighttime AHL (2200 local time)

Heat Waves:


Daytime HWs(1400 local time) Nighttime HWs (2200 local time) Compound HWs (both 1400 and 2200 local time)

- The definition of heat wave doesn't affect AHL
- LSP-DS can catch the AHL

		Ob compound	servatio	on	oad (Day	LSP-D		Added Heat Load (Nighttime) Observation LSP-DS compound daytime nighttime compound daytime nighttime							
	Tokyo(1)-Ryuugasaki	-0.6	-0.4	-0.6	-0.3	-0.3	-0.5	0.5	0.4	0.4	-0.1	-0.1	-0.2		
	Tokyo(1)-Ushiku	-0.3	-0.1	-0.4	0.5	0.6	0.4	0.5	0.4	0.4	0.6	0.7	0.3		- 2.0
	Tokyo(2)-Ryuugasaki	0.0	-0.4	-0.1	-0.2	-0.1	-0.0	0.3	0.4	0.4	0.2	0.2	0.2		
	Tokyo(2)-Ushiku	0.3	0.1	0.2	0.4	0.5	0.5	0.8	0.8	0.6	0.9	0.8	0.7		
N	lerima(1)-Ryuugasaki	0.3	0.4	0.2	-0.3	-0.2	-0.3	0.9	0.5	0.7	-0.0	0.1	-0.1		- 1.5
	Nerima(1)-Ushiku	0.5	0.4	0.3	0.5	0.8	0.4	0.9	0.4	0.6	0.7	0.7	0.4		
N	lerima(2)-Ryuugasaki	0.0	-0.4	-0.3	-0.0	0.1	-0.0	0.5	0.4	0.4	0.4	0.4	0.3		
	Nerima(2)-Ushiku	0.2	0.1	-0.0	1.0	1.0	0.8	0.9	0.8	0.6	1.2	1.1	0.9		1.0
SL	Fuchuu-Ryuugasaki	0.3	0.2	0.1	-0.3	-0.1	-0.3	0.6	0.4	0.4	0.2	0.2	0.1		-1.0 C
atio	Fuchuu-Ushiku	0.4	0.3	0.2	0.6	0.9	0.4	0.7	0.4	0.4	1.0	0.9	0.6		°) be
	unabashi-Ryuugasaki	-0.6	-0.3	-0.6	-0.3	-0.2	-0.4	0.2	0.3	0.1	0.1	0.1	-0.0		- 0.5 Heat Load
Ubservation	Funabashi-Ushiku	-0.3	0.1	-0.5	0.6	0.5	0.5	0.4	0.7	0.3	0.7	0.7	0.4		-0.5 C
oser	Ebina-Ryuugasaki	0.1	-0.0	-0.0	-1.0	-1.0	-0.9	0.1	0.2	0.1	-0.3	-0.3	-0.3		Added
5	Ebina-Ushiku	0.3	0.1	0.0	-0.5	-0.1	-0.6	0.0	0.2	-0.0	0.4	0.3	0.3		ĀC
	Chiba-Kamogawa	0.9	1.0	0.6	1.6	1.7	1.2	1.1	1.0	0.9	0.7	0.7	0.5		- 0.0
	Chiba-Miura	0.9	0.9	0.8	2.0	2.2	1.4	1.0	0.9	1.0	0.7	0.6	0.6		
Y	rokohama-Kamogawa	1.1		0.5	0.7	0.7	0.4	0.6	0.6	0.5	0.5	0.4	0.3		
	Yokohama-Miura	1.1	1.1	0.9	0.9	0.8	0.6	0.6	0.5	0.6	0.4	0.4	0.3	0	0.5
	Tsujidou-Kamogawa	0.1	0.5	-0.4	0.2	0.4	-0.0	0.4	0.7	0.2	0.4	0.3	0.2		-0.5
	Tsujidou-Miura	0.2	0.1	-0.2	0.2	0.4	0.2	0.4	0.3	0.3	0.2	0.2	0.2		
	Haneda-Kamogawa	1.1	1.4	0.7	1.3		0.9	0.9	0.8	0.5	0.6	0.6	0.4		
	Haneda-Miura	1.2	1.3	0.9	1.7	1.6	1.1	0.8	0.7	0.6	0.6	0.6	0.4		1.0

2.1 Compare with Dynamical Downscaling

How does LSP-DS perform compared to D-DS?

3 Future Plan

Conclusions

- LSP-DS is effective in simulating the detailed interplay between UHI and HWs
- LSP-DS shows less bias compared with D-DS and Reanalysis Dataset
- LSP-DS can be used as a possible downscaling method for urban climate

Future Plan

- **Deepening the understanding** behind the differences between D-DS and LSP-DS
- Compare LSP-DS with other **statistical downscaling approaches** e.g., using conventional statistical methods, or state-of-the-art deep learning techniques
- Evaluate the performance of LSP-DS for other regions in the world, such as desert cities, inland cities

Thank you for your attention!

References:

- Xue, L., Doan, Q.-V., Kusaka, H., He, C., & Chen, F. (2024). Insights into urban heat island and heat waves synergies revealed by a Land-Surface-Physics-Based Downscaling method. *Journal of Geophysical Research: Atmospheres*, 129, e2023JD040531. https://doi.org/10.1029/ 2023JD040531
- 2. Xue, L., Doan, Q.-V., Kusaka, H., He, C., & Chen, F. (2024). Comparison of Land-Surface-Physics-Based Downscaling method and dynamical downscaling method. Manuscript in preparation.