

Improving Snow Simulation in the Upper Colorado River Basin through the National Water Model: The Role of Forcing and Parameterization

Yanjun Gan¹, Yu Zhang¹, Cezar Kongoli², Ming Pan³

1. Department of Civil Engineering, University of Texas at Arlington

- 2. Earth System Science Interdisciplinary Center, University of Maryland, College Park
- 3. Center for Western Weather and Water Extremes, University of California, San Diego

Background

Noah-MP

Different LSMs

- LSMs underestimate snow accumulation and hence peak SWE in Upper Colorado River Basin (UCRB)
- Sources of uncertainty: Forcing errors and model deficiencies (structure and parameter)

Research questions

- Forcing data impact
 - How do errors in forcing data (precipitation and air temperature) affect snowpack simulations?
- Model parameterization influence
 - What is the relative impact of different model parameterization schemes on snowpack simulation accuracy?
- Enhancing predictability in complex regions
 - Can optimal parameterization schemes, combined with bias-corrected forcing data, enhance snowpack predictability in UCRB?

Gan, Y., Zhang, Y., Kongoli, C., & Pan, M. (2024). The role of forcing and parameterization in improving snow simulation in the Upper Colorado River Basin using the National Water Model. *Water Resources Research*. (Under review)

Study area and data

- Model: NWM v2.1 (1-km resolution for the Noah-MP)
- Static data: Obtained from the National Water Center (NWC) and subset for the UCRB (870×603 1-km grid cells)
- Forcing data: 1-km hourly AORC forcing data (Fall et al., 2023) for water years (WYs) 2016– 2019
- Observation data: Bias-corrected and qualitycontrolled (BCQC) SNOTEL data for 46 sites (Yan et al., 2018; Sun et al. 2019; <u>https://www.pnnl.gov/data-products</u>)

Evaluation of AORC driven SWE

5

The role of forcing

Experiment ID	Experiment name	Adjusted forcing variables	Scheme combination
1	CTL	none	default
2	adj_prec	precipitation	default
3	adj_temp	temperature	default
4	adj_both	precipitation and temperature	default

- adj_prec vs. CTL
 - Reduces RMSE by 66%
- adj_temp vs. CTL
 - Reduces RMSE by 10%
- adj_both vs. CTL
 - Reduces RMSE by 69%

The role of parameterization

2×2×3×2×3=72 combinations

Physical process	Parameterization schemes
Surface exchange coefficient for heat (SFC)	1. Monin–Obukhov (Monin & Obukhov, 1954; default)
	2. Chen97 (Chen et al., 1997)
Snow surface albedo (ALB)	1. BATS (Yang et al., 1997; default)
	2. CLASS (Verseghy, 1991)
Rainfall and snowfall partitioning (SNF)	1. Jordan91 (Jordan, 1991; default)
	2. BATS (Dickinson et al., 1986)
	3. Noah (Chen et al., 1996)
Lower boundary of soil temperature (TBOT)	1. Zero-flux (Niu et al., 2011)
	2. Noah (Pan & Mahrt, 1987; default)
Snow/soil temperature time scheme (STC)	1. Semi-implicit (Yang et al., 2011)
	2. Fully implicit (Pan & Mahrt, 1987)
	3. Modified semi-implicit (Yang et al., 2011; default)

72 experiments driven by adjusted AORC forcings (both precipitation and temperature)

Sensitivity analysis of the physical processes

Assume that there are *m* distinct physical processes (here m = 5), each with various parameterization schemes (2 or 3 for different processes). The mean value of the evaluation metric (RMSE) for each specific scheme *j* (*j* = 1, 2, ···) within a given process *i* (*i* = 1, 2, ···, *m*) can be represented as $\overline{Y}_{j}^{(i)}$. We defined an index to quantify the sensitivities of these physical processes as follows:

$$S_{i} = \frac{\Delta \overline{Y}^{(i)}}{max\{\Delta \overline{Y}^{(1)}, \Delta \overline{Y}^{(2)}, \cdots, \Delta \overline{Y}^{(m)}\}}$$

where $\Delta \overline{Y}^{(i)} = \overline{Y}_{max}^{(i)} - \overline{Y}_{min}^{(i)}$ is the difference between the largest and the smallest mean values of the evaluation metric (RMSE) for the *i*th process.

Combinatorial optimization of the schemes

- STC-2: Tends to generate larger coefficients *B* in the thermal diffusion equation, resulting in smaller increments for the snow surface temperature, which leads to more extensive snow cover and delayed snow ablation
- SNF-3: Partitions less precipitation into snowfall due to its lower air temperature threshold
- SFC-1: Produces a larger negative bias during the snow accumulation period and a larger positive bias during the late snow ablation period, because it produces a lower C_H , which results in a less efficient land surface ventilation and higher surface skin temperature (Niu et al., 2011)
- ALB-1: Produces a slightly higher snow surface albedo and, consequently, retaining more snow than the ALB-2 (CLASS) scheme, primarily due to its weaker snow aging effects (Niu et al., 2011)
- STC-1: Sets the whole grid cell to freezing temperature, while STC-3 only sets the snow-covered part to freezing temperature, producing more realistic ground surface temperature

Optimal vs. default scheme combinations

Default scheme combination: SFC-1, ALB-1, SNF-1, TBOT-2, and STC-3 Optimal scheme combination: SFC-2, ALB-2, SNF-1, TBOT-1, and STC-3

Physical process	Parameterization schemes
Surface exchange coefficient for heat (SFC)	1. Monin–Obukhov (Monin & Obukhov, 1954; default)
	2. Chen97 (Chen et al., 1997)
Snow surface albedo (ALB)	1. BATS (Yang et al., 1997; default)
	2. CLASS (Verseghy, 1991)
Rainfall and snowfall partitioning (SNF)	1. Jordan91 (Jordan, 1991; default)
	2. BATS (Dickinson et al., 1986)
	3. Noah (Chen et al., 1996)
Lower boundary of soil temperature (TBOT)	1. Zero-flux (Niu et al., 2011)
	2. Noah (Pan & Mahrt, 1987; default)
Snow/soil temperature time scheme (STC)	1. Semi-implicit (Yang et al., 2011)
	2. Fully implicit (Pan & Mahrt, 1987)
	3. Modified semi-implicit (Yang et al., 2011; default)

Optimal vs. default scheme combinations

Takeaways

• Forcing data impact

- Adjusting AORC precipitation reduced SWE RMSE by 66%, adjusting temperature trimmed it by 10%, and adjusting both decreased it by 69%
- SWE simulations are more sensitive to AORC precipitation adjustments than to adjustments in air temperature

Model parameterization influence

- Sensitivity: STC > SFC > ALB > SNF > TBOT
- Optimization of parameterization scheme combination led to a 12% reduction in SWE RMSE
- When combined with bias-corrected AORC precipitation and temperature, parameterization optimization achieved a remarkable 78% reduction in SWE RMSE

Enhancing predictability in complex regions

- Improve the quality of forcing data, especially precipitation, by incorporating more in-situ observations
- Optimize model structures and mitigate model parameterization uncertainties
- Improve physical processes such as rainfall/snowfall partitioning and snow ablation

Thank you! Questions and Comments?

🖄 yanjun.gan@uta.edu