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Background
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• LSMs underestimate snow accumulation and hence peak SWE in Upper Colorado River Basin (UCRB)

• Sources of uncertainty: Forcing errors and model deficiencies (structure and parameter)

OL: open loop; 3DVAR: 3D variational; DI: direct insertion



Research questions

• Forcing data impact
◦ How do errors in forcing data (precipitation and air temperature) affect snowpack 

simulations? 

• Model parameterization influence
◦ What is the relative impact of different model parameterization schemes on snowpack 

simulation accuracy? 

• Enhancing predictability in complex regions
◦ Can optimal parameterization schemes, combined with bias-corrected forcing data, 

enhance snowpack predictability in UCRB? 
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Study area and data
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• Model: NWM v2.1 (1-km resolution for the 

Noah-MP)

• Static data: Obtained from the National Water 

Center (NWC) and subset for the UCRB 

(870×603 1-km grid cells)

• Forcing data: 1-km hourly AORC forcing data 

(Fall et al., 2023) for water years (WYs) 2016–

2019 

• Observation data: Bias-corrected and quality-

controlled (BCQC) SNOTEL data for 46 sites 

(Yan et al., 2018; Sun et al. 2019;

https://www.pnnl.gov/data-products) 

https://www.pnnl.gov/data-products


Evaluation of AORC driven SWE

• NWM captures the overall temporal 

variation of SWE, but underestimates 

the magnitude by 36% (RMSE = 62.6 

mm)

• Slower snow ablation is noted in WY 

2017 and WY 2019, while faster snow 

ablation occurs in WY 2018 

• Possible reasons

◦ Errors in forcing data (e.g., a 21% precipitation 

underestimate and a slight air temperature 

overestimate of 0.7 K)

◦ Model deficiencies in rainfall/snowfall 

partitioning and snow ablation physics (e.g., 

snow albedo and net radiation) 
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Experiment ID Experiment name Adjusted forcing variables Scheme combination

1 CTL none default



The role of forcing
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Precipitation (forcing vs. observed) Temperature (forcing vs. observed)



The role of forcing

• adj_prec vs. CTL 

◦ Reduces RMSE by 66% 

• adj_temp vs. CTL 

◦ Reduces RMSE by 10%

• adj_both vs. CTL

◦ Reduces RMSE by 69% 
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Experiment ID Experiment name Adjusted forcing variables Scheme combination

1 CTL none default

2 adj_prec precipitation default

3 adj_temp temperature default

4 adj_both precipitation and temperature default



The role of parameterization
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Physical process Parameterization schemes

Surface exchange coefficient for heat (SFC) 1. Monin–Obukhov (Monin & Obukhov, 1954; default)

2. Chen97 (Chen et al., 1997)

Snow surface albedo (ALB) 1. BATS (Yang et al., 1997; default)

2. CLASS (Verseghy, 1991)

Rainfall and snowfall partitioning (SNF) 1. Jordan91 (Jordan, 1991; default)

2. BATS (Dickinson et al., 1986)

3. Noah (Chen et al., 1996)

Lower boundary of soil temperature (TBOT) 1. Zero-flux (Niu et al., 2011)

2. Noah (Pan & Mahrt, 1987; default)

Snow/soil temperature time scheme (STC) 1. Semi-implicit (Yang et al., 2011)

2. Fully implicit (Pan & Mahrt, 1987)

3. Modified semi-implicit (Yang et al., 2011; default)

2×2×3×2×3=72 combinations

72 experiments driven by adjusted AORC forcings (both precipitation and temperature)



Sensitivity analysis of the physical processes
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STC > SFC > ALB > SNF > TBOT

Assume that there are 𝑚 distinct physical 

processes (here 𝑚 = 5), each with various 

parameterization schemes (2 or 3 for 

different processes). The mean value of the 

evaluation metric (RMSE) for each specific 

scheme 𝑗 (𝑗 = 1, 2,⋯) within a given process 

𝑖 (𝑖 = 1, 2,⋯ ,𝑚) can be represented as ത𝑌𝑗
(𝑖)

. 

We defined an index to quantify the 

sensitivities of these physical processes as 

follows: 

where ∆ത𝑌 𝑖 = ത𝑌𝑚𝑎𝑥
(𝑖)

− ത𝑌𝑚𝑖𝑛
(𝑖)

 is the difference 

between the largest and the smallest mean 

values of the evaluation metric (RMSE) for 

the 𝑖th process.

𝑆𝑖 =
∆ത𝑌 𝑖

𝑚𝑎𝑥 ∆ ത𝑌 1 , ∆ ത𝑌 2 ,⋯ , ∆ ത𝑌 𝑚

SFC = surface exchange coefficient for heat

ALB = snow surface albedo

SNF = rainfall and snowfall partitioning

TBOT = lower boundary of soil temperature

STC = snow/soil temperature time scheme



Combinatorial optimization of the schemes

• STC-2: Tends to generate larger coefficients 𝐵 in the 

thermal diffusion equation, resulting in smaller 

increments for the snow surface temperature, which 

leads to more extensive snow cover and delayed snow 

ablation

• SNF-3: Partitions less precipitation into snowfall due to 

its lower air temperature threshold

• SFC-1: Produces a larger negative bias during the snow 

accumulation period and a larger positive bias during the 

late snow ablation period, because it produces a lower 

𝐶𝐻, which results in a less efficient land surface 

ventilation and higher surface skin temperature (Niu et 

al., 2011)

• ALB-1: Produces a slightly higher snow surface albedo 

and, consequently, retaining more snow than the ALB-2 

(CLASS) scheme, primarily due to its weaker snow 

aging effects (Niu et al., 2011)

• STC-1: Sets the whole grid cell to freezing temperature, 

while STC-3 only sets the snow-covered part to freezing 

temperature, producing more realistic ground surface 

temperature
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Optimal vs. default scheme combinations 
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Default scheme combination: SFC-1, ALB-1, SNF-1, TBOT-2, and STC-3

Optimal scheme combination: SFC-2, ALB-2, SNF-1, TBOT-1, and STC-3

Physical process Parameterization schemes

Surface exchange coefficient for heat (SFC) 1. Monin–Obukhov (Monin & Obukhov, 1954; default)

2. Chen97 (Chen et al., 1997)

Snow surface albedo (ALB) 1. BATS (Yang et al., 1997; default)

2. CLASS (Verseghy, 1991)

Rainfall and snowfall partitioning (SNF) 1. Jordan91 (Jordan, 1991; default)

2. BATS (Dickinson et al., 1986)

3. Noah (Chen et al., 1996)

Lower boundary of soil temperature (TBOT) 1. Zero-flux (Niu et al., 2011)

2. Noah (Pan & Mahrt, 1987; default)

Snow/soil temperature time scheme (STC) 1. Semi-implicit (Yang et al., 2011)

2. Fully implicit (Pan & Mahrt, 1987)

3. Modified semi-implicit (Yang et al., 2011; default)



Optimal vs. default scheme combinations 

• adj_none-opt_para vs. CTL

◦ Reduces RMSE by 12%

• adj_both-opt_para vs. adj_both

◦ Reduces RMSE by 27%

• adj_both-opt_para vs. CTL 

◦ Reduces RMSE by 78%
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Experiment ID Experiment name Adjusted forcing variables Scheme combination

1 CTL none default

2 adj_none-opt_para none optimized

3 adj_both precipitation and temperature default

4 adj_both-opt_para precipitation and temperature optimized



Takeaways

• Forcing data impact
◦ Adjusting AORC precipitation reduced SWE RMSE by 66%, adjusting temperature trimmed it 

by 10%, and adjusting both decreased it by 69%

◦ SWE simulations are more sensitive to AORC precipitation adjustments than to adjustments in 

air temperature

• Model parameterization influence
◦ Sensitivity: STC > SFC > ALB > SNF > TBOT

◦ Optimization of parameterization scheme combination led to a 12% reduction in SWE RMSE

◦ When combined with bias-corrected AORC precipitation and temperature, parameterization 

optimization achieved a remarkable 78% reduction in SWE RMSE 

• Enhancing predictability in complex regions
◦ Improve the quality of forcing data, especially precipitation, by incorporating more in-situ 

observations

◦ Optimize model structures and mitigate model parameterization uncertainties

◦ Improve physical processes such as rainfall/snowfall partitioning and snow ablation
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Thank you!

Questions and Comments?

yanjun.gan@uta.edu
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