Improvement of Forest Canopy Characterization Based on NoahMP and Its Impact on Land Air Exchange Processes

Ming Chang changming@email.jnu.edu.cn

Jinan University, Guangzhou, China Collaborators: Guotong Wu, Wenxin Lin, Xinyuan Kang, Xuemei Wang

Noah-MP workshop, 4 Jun 2024

Key processes: land-air exchange

Key interface: canopy

3

Vegetation morphology in different models

Hourly Models

Hanson et al, 2004; D. Baldocchi., 2016

Parameters of Canopy in Noah-MP

The canopy structure is represented by a simple geometric shape

MPTABLE.TBL

Used/Defined in Subroutine	Short description [units]			
CANWATER	Maximum water intercepted by canopy [mm]			
RAGRB	Leaf dimension [m]			
ENERGY	Momentum roughness length [m]			
PHENOLOGY / TWOSTREAM	Canopy top [m]			
PHENOLOGY / TWOSTREAM	Canopy bottom [m]			
TWOSTREAM	Tree density [number/m ²]			
TWOSTREAM	Crown radius [m]			
··· ··· ···				
CO2FLUX / STOMATA	Maximum foliage nitrogen factor (see FOLN setting in code) [unitless]			
CO2FLUX	Wood pool factor used to determine relative wood presence [unitless]			
CO2FLUX	Wood to non-wood ratio [kg/kg]			
CO2FLUX	Microbial respiration in fast soil carbon pool at 10°C [umol/m ² /s]			
PHENOLOGY	Monthly stem area index when prescribed [m ² /m ²]			
PHENOLOGY	Monthly leaf area index when prescribed [m ² /m ²]			
BVOCFLUX	Stem-to-leaf area density [unitless]			
BVOCFLUX	Emission capacity for up to 5 different BVOC fluxes at 30°C [ug C/g foliar mass/hour]			
	Used/Defined in Subroutine CANWATER RAGRB ENERGY PHENOLOGY / TWOSTREAM PHENOLOGY / TWOSTREAM TWOSTREAM CO2FLUX / STOMATA CO2FLUX CO2FLUX CO2FLUX PHENOLOGY PHENOLOGY BVOCFLUX BVOCFLUX			

The canopy data by earth observation

费心

How to get canopy parameters in our study forest?

Sample site, Subtropical forests in Guangdong, China

FluxTower

Using UAV-based Photogrammetry

Correction of canopy parameters and its effects

M Chang, et al. Remote Sensing. 2020

How to get more accuracy canopy parameters?

Light Detection and Ranging (LiDAR)

- WAXiand Aisborned DARifferent
- altigedae der aegopy.
- Less affected by occlusions and
 High flexibility
- Figh flexibility shadows, can penetrate the canopy
- Large range of acquired data information.

Guo et al., 2021₁₁

UAVs and LiDAR setup

- Active remote sensing: unmanned airborne lidar
- Passive optical remote sensing: visible light drones

- Flight altitude: 100 metres from the landing site
- Flight speed: 4.3 m/s
- Average sampling distance: 7.24 cm

- Heading overlap: 80.0%
- Scanning angle: 37° and 70°

(b)	Initial image positions Computed image positions (i) (i)	C	
	000000000000000000000000000000000000000	٩	
	• • • • • • • • • • • • • • • • • •		
	$\textcircled{\begin{array}{c} \bullet \bullet$	٩	
	$\textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} $		
and the	$\odot \odot $		

Relative geographic accuracy
 X: 95.0% Y: 100.0% Z: 100.0%

Single Tree Segmentation of Point Cloud in Sample Land Surveying

Characteristics of field canopy structure

Average values of the canopy structure

	LPR	VPR	Observed (Reference)
Average tree height (<mark>HVT</mark> , m)	16.35 ± 2.19	16.02 ± 7.07	7.0~16.7
The diameter at breast height (<mark>DBH</mark> , cm)	2.22 ± 1.92	1.48 ± 1.60	5.1~21.9
Canopy radius (<mark>RC</mark> , m)	3.92 ± 1.78	4.80 ± 2.35	3.0~16.0
Leaf area index (LAI)	4.28 ± 2.38	0.48 ± 0.43	6.5 ± 0.7
Canopy cover	0.81 ± 0.18	0.48 ± 0.32	>0.8
Gap fraction	0.19 ± 0.18	052 ± 0.42	0.1~0.2

LPR: LiDAR Photogrammetry Results VPR: Visible-light Photogrammetry Results

• Passive optical remote sensing has major limitations in establishing a link with vegetation.

Correction of canopy parameters by using fitting function

- Relationship between average tree height (HVT) and Canopy radius (RC) driven by (a) LPR and (b) VPR.
- Red lines indicate linear fits.

HVT and RC functions for Noah-MP inputs

Variables	Default	LPR	VPR
HVT	16.0	HVT from LPR	HVT from VPR
RC	1.4	$-0.09 \times HVT + 0.01 \times HVT^{2} + 3.21$	-11.82 × 0.92 ^{HVT} + 12.29

Results of the simulated canopy temperature and humidity profiles

GT Wu et al. Remote Sensing. 2022

Diagnosis of the radiation and heat fluxes

GT Wu et al. Remote Sensing. 2022

17

Parameters vs OPT_RAD option choice

Experimental name	Vegetation canopy parameters	Vegetation canopy structure programme options
D_1		Three-dimensional (3D) canopy morphology
D_2	Default	Non-vegetated gap
D_3		Coverage-based
LPR_1	LPR	Three-dimensional (3D) canopy morphology
LPR_2		Non-vegetated gap
LPR_3		Coverage-based
VPR_1	VPR	Three-dimensional (3D) canopy morphology
VPR_2		Non-vegetated gap
VPR_3		Coverage-based

Canopy 3D Morphology with LiDAR Photogrammetry Parameter inputs have Lower RMSE for radiation

• The upward shortwave radiation and upward longwave radiation RMSEs simulated by the LPR are reduced by 9.5% and 3.6% compared to the VPR.

Canopy 3D Morphology with LiDAR Photogrammetry Parameter inputs have Lower RMSE for latent heat flux

• The upward shortwave radiation and upward longwave radiation RMSEs simulated by the LPR are reduced by 9.5% and 3.6% compared to the VPR.

Current Mechanism

Considering canopy gaps $P_{\rm bc} = e^{\frac{-\rho_{\rm t} \times \pi \times r^2}{\cos(\theta')^2}}$ P_c : total canopy gap probability $P_{c} = min \begin{cases} 1 - F_{veg} \\ P_{bc} + P_{wc} \end{cases}$ between-crown gap probability $K_{open} = 0.05$ $\rho_t = -\frac{\log(\max(1.0 - F_{veg}, 0.01))}{\pi \times u^2}$ K_{open}: gap fraction $\theta' = \tan^{-1}\left[\frac{H_{top} - H_{bot}}{2\pi} \times \tan\theta\right]$ F_{veg} : veg fraction within-Crown Gap r: tree crown radius **Probability** *H_{top}*: height to canopy top No canopy gaps H_{bot}: height to canopy bottom $P_{c} = 0$ $-0.5 \times F_a \times (H_{top} - H_{bot})$ $K_{open} = 0$ $\cos\theta$ $\cdots P_{wc} = (1 - P_{hc}) \times e$

Further work 1: Expressing more refined canopy structure and processes in the model

Extractable from UAV-based photogrammetry: Height, Length, Volume, Coverage Canopy closure, Leaf area index, Gap rate, Biomass…

22

Further work 2: expressing and comparing from other scales

Related Papers

- M Chang, JC Cao, Qi Zhang, WH Chen, GT Wu, LP Wu, WW WANG, XM Wang*, Improvement of stomatal resistance and photosynthesis mechanism of Noah-MP-WDDM (v1.42) in the simulation of NO₂ dry deposition velocity in forests, Geoscientific Model Development, 2022. 15(2):787-801.
- GT W, YC Y, YB Y, JC Cao, YJ Bai, SJ Zhu, LP Wu, WW Wang, M Chang* and XM Wang, UAV-LiDAR Measurement of Vegetation Canopy Structure Parameters and Their Impact on Land-Air Exchange Simulation Based on Noah-MP Model, Remote Sensing, 2022. 14(13):2998.
- M Chang, SJ Zhu, JC Cao, BY Chen, Qi Zhang, WH Chen, SG Jia, Krishnan Padmaja, XM Wang*. Improvement and Impacts of Forest Canopy Parameters on Noah-MP Land Surface Model from UAV-Based Photogrammetry. Remote Sensing. 2020, 12, 4120.
- M Chang, WH Liao, XM Wang*, Q Zhang, WH Chen, ZY Wu. An optimal ensemble of the Noah-MP land surface model for simulating surface heat fluxes over a typical subtropical forest in South China. Agricultural and Forest Meteorology. 2019, 281: 107815.

