

Assessment of Noah-MP Land Surface Model for parameterization schemes selection across the Iberian Peninsula

Nicolás Tacoronte^(1,*), Matilde García-Valdecasas Ojeda^(1,2), David Donaire-Montaño⁽¹⁾, Juan José Rosa-Cánovas⁽¹⁾, Emilio Romero-Jiménez⁽¹⁾, Yolanda Castro-Díez^(1,2), María Jesús Esteban-Parra ^(1,2) and Sonia R. Gámiz-Fortis^(1,2)

(1) Department of Applied Physics, University of Granada, Granada, Spain,

(2) Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA-CEAMA), Granada, España * nicotacor@ugr.es

Introduction: Importance of soil parameterization

Bellucci et al. (2015):

• Transitional climate zones with strong landatmosphere coupling.

Breil et al. (2019):

• Improves the predictive capacity of climate models on a decadal scale.

Miralles et al. (2014):

 Feedback mechanisms: extremes and effects of climate change (prediction of droughts and heat waves).

Kirtman, B., et al. (2013)

Data and methodology: WRF model configuration

- Nested domains:
 - ➢ d01: EUROCORDEX, ~50Km
 - d02: Iberian Peninsula ~10Km
- Parameterization schemes (Argüeso et al., 2011; García-Valdecasas Ojeda et al., 2017, 2020):
 - Microphysics: WSM3C
 - Cumulus clouds: BMJ
 - Short/long wave radiation: CAM 3
 - Surface layer physics: MM5 similarity.
 - Planetary boundary layer: ACM2
- 30 years of spin up (Hu et al., 2023)

Data and methodology: Noah-MP and choice of experiments

Variable physical	New name	Original name		<u> </u>												
meaning/definition	ivew name	Original name		Exp	dveg	crs	sfc	btr	run	frz	inf	rad	alb	tbot	stc	rsf
	Namelist		Default →	0	1	1	1	1	3	1	1	3	2	2	1	1
options for dynamic vegetation	OptDynamicVeg	OPT_DVEG		0	7	'	'	'	5	<u>'</u>	'	5	2	2		
options for canopy stomatal	OntStomataBesistance	OPT CPS] (1	2	1	1	1	1	1	1	1	1	1	1	1
resistance	Optotomatarcesistance	011_003		2	3	1	1	1	1	1	1	1	1	1	1	1
options for soil moisture factor for	OptSoilWaterTranspiration	OPT BTR		2	5	'	'	<u>'</u>	<u> </u>	<u> </u>	'	'	'	'	– –	-
stomatal resistance	Option Water Hanspiration	OI I_DIK		3	2	2	1	1	1	1	1	1	1	1	1	1
options for surface runoff	OptRunoffSurface	OPT_RUNSRF		4	2	1	4	2	1	4	4	1	1	1	1	1
options for subsurface runoff	OptRunoffSubsurface	OPT_RUNSUB	Common	4	2	'	1	2	<u> </u>	<u> </u>	'	'	-	'	<u>'</u>	-
options for surface layer drag coeff	OptSurfaceDrag	OPT_SFC		5	2	1	2	1	1	1	1	1	1	1	1	1
options for supercooled liquid	OptSoilSupercoolWater	OPT FR7	references and	6	2	4	4	4	4	4	4	2	4	4	4	1
water (or ice fraction)	Optionioupercoorwater	OI I_I KZ	basic	0	2	1	1		<u> </u>	<u> </u>	1	2	1	1	'	-
options for frozen soil permeability	OptSoilPermeabilityFrozen	OPT_INF		7	2	1	1	1	1	1	1	3	1	1	1	1
options for canopy radiation	OptCapopyRadiationTransfer	OPT RAD	combinations	0	_	4	4	4	4		4	4	0	4		4
transfer	OpteanopyRadiationTransfer	OI I_KAD		0	2	1	1	1	1	1	1	1	Z	1	1	1
options for ground snow surface	OptSpowAlbedo	OPT ALB		9	2	1	1	1	4	1	1	1	1	1	1	1
albedo	OptonowAlbedo	OI I_ALD		40				4	4	_	4			4		
options for partitioning				10	2	1	1	1	1	2	1	1	1	1	1	1
precipitation into rainfall &	OptRainSnowPartition	OPT_SNF		11	2	1	1	3	1	1	1	1	1	1	1	1
snowfall																<u> </u>
options for lower boundary	OptSoilTemperatureBottom	OPT TBOT														
condition of soil temperature	optoonTemperatureDottom	011_1001														
options for snow/soil temperature	OptSnowSoilTempTime	OPT_STC														
time scheme (only layer 1)	optonovoonrenprine	011_010														
options for surface resistent to	OptGroundResistanceEvap	OPT RSF														4
evaporation/sublimation	optoroundrecolotaneer.vap															

Data and methodology: Noah-MP and choice of experiments

Variable physical meaning/definition	New name	Original name
	Namelist	
options for dynamic vegetation	OptDynamicVeg	OPT_DVEG
options for canopy stomatal resistance	OptStomataResistance	OPT_CRS
options for soil moisture factor for stomatal resistance	OptSoilWaterTranspiration	OPT_BTR
options for surface runoff	OptRunoffSurface	OPT_RUNSRF
options for subsurface runoff	OptRunoffSubsurface	OPT_RUNSUB
options for surface layer drag coeff	OptSurfaceDrag	OPT_SFC
options for supercooled liquid water (or ice fraction)	OptSoilSupercoolWater	OPT_FRZ
options for frozen soil permeability	OptSoilPermeabilityFrozen	OPT_INF
options for canopy radiation transfer	OptCanopyRadiationTransfer	OPT_RAD
options for ground snow surface albedo	OptSnowAlbedo	OPT_ALB
options for partitioning precipitation into rainfall & snowfall	OptRainSnowPartition	OPT_SNF
options for lower boundary condition of soil temperature	OptSoilTemperatureBottom	OPT_TBOT
options for snow/soil temperature time scheme (only layer 1)	OptSnowSoilTempTime	OPT_STC
options for surface resistent to evaporation/sublimation	OptGroundResistanceEvap	OPT_RSF

ſ	12	5	1	1	1	1	1	1	1	1	1	1	1
	13	5	1	1	1	1	1	1	1	1	1	1	3
Dry scenario	14	5	1	1	2	1	1	2	1	1	1	1	1
	15	5	1	1	2	1	1	2	1	1	1	1	3
	16	5	1	1	2	4	1	2	1	1	1	1	3
ļ	17	5	2	1	2	4	2	2	1	1	1	1	3
	18	2	1	2	1	1	1	1	2	2	2	1	1
	19	2	1	1	2	1	1	1	1	1	2	1	1
	20	2	1	1	3	1	1	1	1	2	1	1	1
	21	2	1	1	3	1	1	1	3	2	1	1	1
Wet scenario	22	2	1	1	3	1	1	1	3	2	2	1	1
Wet seenano	23	5	1	1	2	1	1	1	3	2	2	1	1
	24	1	1	1	1	1	1	1	1	1	1	1	1
	25	2	1	1	3	3	1	1	3	2	2	1	1
	26	2	1	1	3	3	1	1	3	2	1	1	1
l	27	2	1	1	3	3	1	1	1	2	1	1	1
Combination	28	5	2	1	3	1	2	1	3	2	1	1	1

Data and methodology: Year selection

Annual accumulated precipitation in peninsular Spain. Source: AEMET

NCEP/NCAR Reanalysis

Precipitation rate 2.8 2.6 (mm/day) for 2005 2.4 2.2 (left) and for 2010 1.8 (right). 1.6 Data: NCEP/NCAR 40-1.2 0.8 year reanalysis (Kalnay 0.6 0.4 et al. 1996) 0.2

Data and methodology: Selection of parameterization schemes

Sensitivity

Evaluation Metrics: Chang, M. et al. (2019)

Statistical formulae used for the analyses of the option combinations.

Statistical Metrics	Equation ¹
Mean Bias Error(MBE)	$\frac{\sum_{i=1}^{n}(M_{i}-O_{i})}{2}$
Standard Deviation(SD)	$\left 1 - \frac{\sqrt{\frac{\sum_{i=1}^{n} (M_{i} - \overline{M})^{2}}{n-1}}}{\sqrt{\frac{\sum_{i=1}^{n} (O_{i} - \overline{O})^{2}}{n-1}}}\right $
Correlation Coefficient(COR)	$\frac{n\sum_{i=1}^{n}(O_{i}M_{i})-(\sum_{i=1}^{n}O_{i}\sum_{i=1}^{n}M_{i})}{\sqrt{[n\sum_{i=1}^{n}O_{i}^{2}-(\sum_{i=1}^{n}O_{i})^{2}][n\sum_{i=1}^{n}M_{i}^{2}-(\sum_{i=1}^{n}M_{i})^{2}]}}$
Normalized Mean Error(NME)	$\frac{\sum_{i=1}^{n} M_i - O_i }{\sum_{i=1}^{n} \overline{O} - O_i }$
5% Statistical Measure ² (%5) 95% Statistical Measure ² (%95)	$ M_5 - O_5 $ $ M_{95} - O_{95} $

¹ M represents the model values and O the observed values.

 2 M_{5} , O_{5} : value at 5% of distribution of M, O respectively, M_{95} , O_{95} : value at 95% of distribution of M, O respectively.

Spatial analysis

Application of the Student t Test with α = 0.05 between the WRF and AEMET experiments

Prueba T de Muestras = Independientes donde

$$s^{2} = \frac{\sum_{i=1}^{n_{1}} (x_{i} - \overline{x}_{1})^{2} + \sum_{j=1}^{n_{2}} (x_{j} - \overline{x}_{2})^{2}}{n_{1} + n_{2} - 2}$$

Results: sensitivity

Ranking for pr, Tmin and Tmax taking into account the correlation, standard deviation, MBE, NME, p5 and p95 with respect to AEMET

Sensitivity analysis based on the ranking of experiments of the different parameters of the Noah-MP configuration for precipitation

Exp	dveg	crs	sfc	btr	run	frz	inf	rad	alb	tbot	stc	rsf
0	4	1	1	1	3	1	1	3	2	2	1	1
1	2	1	1	1	1	1	1	1	1	1	1	1
2	3	1	1	1	1	1	1	1	1	1	1	1
3	2	2	1	1	1	1	1	1	1	1	1	1
4	2	1	1	2	1	1	1	1	1	1	1	1
5	2	1	2	1	1	1	1	1	1	1	1	1
6	2	1	1	1	1	1	1	2	1	1	1	1
7	2	1	1	1	1	1	1	3	1	1	1	1
8	2	1	1	1	1	1	1	1	2	1	1	1
9	2	1	1	1	4	1	1	1	1	1	1	1
10	2	1	1	1	1	2	1	1	1	1	1	1
11	2	1	1	3	1	1	1	1	1	1	1	1
12	5	1	1	1	1	1	1	1	1	1	1	1
13	5	1	1	1	1	1	1	1	1	1	1	3
14	5	1	1	2	1	1	2	1	1	1	1	1
15	5	1	1	2	1	1	2	1	1	1	1	3*
16	5	1	1	2	4	1	2	1	1	1	1	3
17	5	2	1	2	4	2	2	1	1	1	1	3
18	2	1	2	1	1	1	1	2	2	2	1	1
19	2	1	1	2	1	1	1	1	1	2	1	1
20	2	1	1	3	1	1	1	1	2	1	1	1
21	2	1	1	3	1	1	1	3	2	1	1	1
22	2	1	1	3	1	1	1	3	2	2	1	1
23	5	1	1	2	1	1	1	3	2	2	1	1
24	1	1	1	1	1	1	1	1	1	1	1	1
25	2	1	1	3	3	1	1	3	2	2	1	1
26	2	1	1	з	з	1	1	з	2	1	1	1
27	2	1	1	3	3	1	1	1	2	1	1	1
28	5	2	1	3	1	2	1	3	2	1	1	1

Results: Maximum and minimum temperature sensitivity

Sensitivity analysis based on the ranking of experiments of the different parameters of the Noah-MP configuration for maximum temperature and minimum temperature.

Results: Annual cycle - 2005

Standard deviations:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
pr	0.14	1.31	2.00	14.60	2.79	3.19	1.40	0.86	2.17	1.01	0.94	2.84	0.29	0.68	3.77	2.75	4.52	14.16	3.01	1.96	1.55	3.68	4.42	2.47	1.14	1.74	2.21	1.00	12.30
tmax	0.76	0.66	0.69	0.75	0.73	0.08	0.68	0.68	0.67	0.63	0.67	0.81	0.79	0.87	0.75	0.90	0.84	0.27	0.40	0.76	0.80	0.74	0.75	0.64	0.88	0.83	0.80	0.87	0.11
tmin	0.07	0.43	0.34	0.69	0.28	0.86	0.53	0.13	0.43	0.42	0.45	0.38	0.47	0.85	0.41	0.78	0.77	0.36	0.96	0.33	0.38	0.04	0.06	0.06	0.36	0.09	0.07	0.41	0.32

Results: Annual cycle - 2010

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
pr	1.88	3.34	0.21	11.46	0.54	2.06	3.01	2.38	2.09	2.11	3.44	1.66	1.83	1.90	0.38	0.43	1.19	12.98	0.77	3.34	1.55	1.06	0.04	0.28	1.41	3.14	2.50	3.89	9.40
tmax	1.00	0.78	0.73	0.70	0.82	0.51	0.78	0.74	0.77	0.66	0.78	0.91	1.09	1.26	1.08	1.20	1.09	0.19	0.90	0.78	0.91	0.83	0.83	0.93	0.93	0.80	1.02	1.11	0.15
tmin	0.35	0.95	0.63	0.50	0.81	1.67	1.04	0.62	0.94	0.90	0.96	0.89	0.94	1.23	0.87	1.13	1.09	0.38	1.87	0.95	0.88	0.52	0.53	0.39	0.62	0.42	0.61	0.99	0.14

Results: Annual cycle - 2010

• 30	0 30	0 30	0 39	· 512	• 2T2	0 310	0 221	° 524	° 327
° sl	° s4	° s7	° s10	° s13	º s16	° s19	• s22	° s25	• s28
• s2	° s5	° s8	s11	° s14	° s17	∘ s20	° s23	° s26	

Standard deviations:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
pr	1.88	3.34	0.21	11.46	0.54	2.06	3.01	2.38	2.09	2.11	3.44	1.66	1.83	1.90	0.38	0.43	1.19	12.98	0.77	3.34	1.55	1.06	0.04	0.28	1.41	3.14	2.50	3.89	9.40
tmax	1.00	0.78	0.73	0.70	0.82	0.51	0.78	0.74	0.77	0.66	0.78	0.91	1.09	1.26	1.08	1.20	1.09	0.19	0.90	0.78	0.91	0.83	0.83	0.93	0.93	0.80	1.02	1.11	0.15
tmin	0.35	0.95	0.63	0.50	0.81	1.67	1.04	0.62	0.94	0.90	0.96	0.89	0.94	1.23	0.87	1.13	1.09	0.38	1.87	0.95	0.88	0.52	0.53	0.39	0.62	0.42	0.61	0.99	0.14

Results: Spatial and temporal analysis

OptSurfaceDrag	1*	Monin-Obukhov (M-O) Similarity Theory (Brutsaert, 1982)
options for surface layer drag/exchange coefficient	2	original Noah (Chen et al. 1997)

Temperatures: big improvement over Noah-LSM

Annual average differences (Model - AEMET)

Exp	dveg	crs	sfc	btr	run	frz	inf	rad	alb	tbot	stc	rsf
0	4	1	1	1	3	1	1	3	2	2	1	1
1	2	1	1	1	1	1	1	1	1	1	1	1
2	3	1	1	1	1	1	1	1	1	1	1	1
3	2	2	1	1	1	1	1	1	1	1	1	1
4	2	1	1	2	1	1	1	1	1	1	1	1
5	2	1	2	1	1	1	1	1	1	1	1	1
6	2	1	1	1	1	1	1	2	1	1	1	1
7	2	1	1	1	1	1	1	3	1	1	1	1
8	2	1	1	1	1	1	1	1	2	1	1	1
9	2	1	1	1	4	1	1	1	1	1	1	1
10	2	1	1	1	1	2	1	1	1	1	1	1
11	2	1	1	3	1	1	1	1	1	1	1	1
12	5	1	1	1	1	1	1	1	1	1	1	1
13	5	1	1	1	1	1	1	1	1	1	1	3
14	5	1	1	2	1	1	2	1	1	1	1	1
15	5	1	1	2	1	1	2	1	1	1	1	3
16	5	1	1	2	4	1	2	1	1	1	1	3
17	5	2	1	2	4	2	2	1	1	1	1	3
18	2	1	2	1	1	1	1	2	2	2	1	1
19	2	1	1	2	1	1	1	1	1	2	1	1
20	2	1	1	3	1	1	1	1	2	1	1	1
21	2	1	1	3	1	1	1	3	2	1	1	1
22	2	1	1	3	1	1	1	3	2	2	1	1
23	5	1	1	2	1	1	1	3	2	2	1	1
24	1	1	1	1	1	1	1	1	1	1	1	1
25	2	1	1	3	3	1	1	3	2	2	1	1
26	2	1	1	3	3	1	1	3	2	1	1	1
27	2	1	1	3	3	1	1	1	2	1	1	1
28	5	2	1	3	1	2	1	3	2	1	1	1

Results: Spatial and temporal analysis

OptSurfaceDrag	1*	Monin-Obukhov (M-O) Similarity Theory (Brutsaert, 1982)
options for surface layer drag/exchange coefficient	2	original Noah (Chen et al. 1997)

Temperatures: big improvement over Noah-LSM

Annual average differences (Model - AEMET)

Percentage of area with nonsignificant differences

Experiment	T2	XAN	T2	MIN
Experiment	2005	2010	2005	2010
0	83,48	76,60	78,39	80,71
1	86,92	85,98	80,73	54,28
2	86,94	87,53	78,76	69,62
3	83,85	89,11	52,33	66,04
4	87,12	84,98	82,71	63,60
5	27,96	45,80	58,60	30,74
6	85,94	85,60	78,62	48,73
7	86,86	87,73	79,94	70,80
8	86,75	86,14	80,63	54,95
9	87,45	89,81	80,81	57,64
10	87,10	86,18	80,43	53,73
11	85,80	82,05	82,85	58,88
12	77,40	69,32	79,74	55,89
13	81,22	60,88	63,30	38,45
14	80,59	71,01	80,57	59,61
15	77,46	65,35	67,51	44,11
16	78,43	71,31	68,04	45,88
17	90,97	95,50	76,95	78,96
18	27,96	49,18	56,30	23,26
19	86,43	85,98	82,54	54,28
20	86,04	82,24	83,17	58,80
21	86,45	85,19	81,08	76,87
22	85,94	85,37	80,81	76,85
23	83,60	78,70	79,71	81,59
24	78,58	79,59	78,86	70,93
25	84,05	85,19	81,83	77,38
26	84,70	76,54	81,81	73,55
27	83,46	71,76	82,50	52,15
28	89,83	94,59	68,71	81,91

Results: Spatial and temporal analysis

OptSurfaceDrag	1*	Monin-Obukhov (M-O) Similarity Theory (Brutsaert, 1982)
options for surface layer drag/exchange coefficient	2	original Noah (Chen et al. 1997)

Temperatures: big improvement over Noah-LSM

Annual average differences (Model - AEMET)

Percentage of area with nonsignificant differences

Experiment	T21	XAN	T2I	MIN	
Experiment	2005	2010	2005	2010	
0	83,48	76,60	78,39	80,71	
1	86,92	85,98	80,73	54,28	
2	86,94	87,53	78,76	69,62	
3	83,85	89,11	52,33	66,04	
4	87,12	84,98	82,71	63,60	
5	27,96	45,80	58,60	30,74	
6	85,94	85,60	78,62	48,73	
7	86,86	87,73	79,94	70,80	
8	86,75	86,14	80,63	54,95	
9	87,45	89,81	80,81	57,64	
10	87,10	86,18	80,43	53,73	
11	85,80	82,05	82,85	58,88	
12	77,40	69,32	79,74	55,89	
13	81,22	60,88	63,30	38,45	
14	80,59	71,01	80,57	59,61	
15	77,46	65,35	67,51	44,11	
16	78,43	71,31	68,04	45,88	
17	90,97	95,50	76,95	78,96	
18	27,96	49,18	56,30	23,26	
19	86,43	85,98	82,54	54,28	
20	86,04	82,24	83,17	58,80	
21	86,45	85,19	81,08	76,87	
22	85,94	85,37	80,81	76,85	
23	83,60	78,70	79,71	81,59	
24	78.58	79.59	78.86	70.93	
25	84,05	85,19	81,83	77,38	
26	84,70	76,54	81,81	73,55	
27	83,46	71,76	82,50	52,15	
28	89,83	94,59	68,71	81,91	

Exp 5 and Exp18 (options for surface layer drag/exchange coefficient) original Noah (default Noah LSM) <<< Monin-Obukhov (M-O) Similarity Theory</p>

- Exp 5 and Exp18 (options for surface layer drag/exchange coefficient) original Noah (default Noah LSM) <<< Monin-Obukhov (M-O) Similarity Theory
- Exp 17 >>> Exp 16: much improvement with:
 - Options for canopy stomatal resistance: Ball-Berry scheme < Jarvis scheme

	dveg	crs	sfc	btr	run	frz	inf	rad	alb	tbot	stc	rsf
16	5	1	1	2	4	1	2	1	1	1	1	3
17	5	2	1	2	4	2	2	1	1	1	1	3

- Exp 5 and Exp18 (options for surface layer drag/exchange coefficient) original Noah (default Noah LSM) <<< Monin-Obukhov (M-O) Similarity Theory
- Exp 17 >>> Exp 16: much improvement with:
 - Options for canopy stomatal resistance: Ball-Berry scheme < Jarvis scheme

	dveg	crs	sfc	btr	run	frz	inf	rad	alb	tbot	stc	rsf
16	5	1	1	2	4	1	2	1	1	1	1	3
17	5	2	1	2	4	2	2	1	1	1	1	3

- Exp 22 < Exp 21: (options for soil temperature lower limit conditions)
 zero heat flux from bottom > TemperatureSoilBottom read from a file (original Noah)
- ▶ Exp 25 ~ Exp 22 (Runoff and Groundwater Option): No improvement from original

	dveg	crs	sfc	btr	run	frz	inf	rad	alb	tbot	stc	rsf
20	2	1	1	3	1	1	1	1	2	1	1	1
21	2	1	1	3	1	1	1	3	2	1	1	1
22	2	1	1	3	1	1	1	3	2	2	1	1
25	2	1	1	3	3	1	1	3	2	2	1	1

- Exp 5 and Exp18 (options for surface layer drag/exchange coefficient) original Noah (default Noah LSM) <<< Monin-Obukhov (M-O) Similarity Theory
- Exp 17 >>> Exp 16: much improvement with:
 - Options for canopy stomatal resistance: Ball-Berry scheme < Jarvis scheme

	dveg	crs	sfc	btr	run	frz	inf	rad	alb	tbot	stc	rsf
16	5	1	1	2	4	1	2	1	1	1	1	3
17	5	2	1	2	4	2	2	1	1	1	1	3

- Exp 22 < Exp 21: (options for soil temperature lower limit conditions)
 zero heat flux from bottom > TemperatureSoilBottom read from a file (original Noah)
- > Exp 25 ~ Exp 22 (Runoff and Groundwater Option): No improvement from original

	dveg	crs	sfc	btr	run	frz	inf	rad	alb	tbot	stc	rsf
20	2	1	1	3	1	1	1	1	2	1	1	1
21	2	1	1	3	1	1	1	3	2	1	1	1
22	2	1	1	3	1	1	1	3	2	2	1	1
25	2	1	1	3	3	1	1	3	2	2	1	1

References

- Argüeso, D., Hidalgo-Muñoz, J. M., Gámiz-Fortis, S. R., Esteban-Parra, M. J., Dudhia, J., & Castro-Díez, Y. (2011). Evaluation of WRF parameterizations for climate studies over southern Spain using a multistep regionalization. Journal of Climate, 24(21), 5633-5651.
- Chang, Ming; Liao, Wenhui; Wang, Xuemei; Zhang, Qi; Chen, Weihua; Wu, Zhiyong. (2019). An optimal ensemble of the Noah-MP land surface model for simulating surface heat fluxes over a typical subtropical forest in South China. Agricultural and Forest Meteorology, 281. https://doi.org/10.1016/j.agrformet.2019.107815.
- García-Valdecasas Ojeda, M., Gámiz-Fortis, S. R., Castro-Díez, Y., & Esteban-Parra, M. J. (2017). Evaluation of WRF capability to detect dry and wet periods in Spain using drought indices. Journal of Geophysical Research: Atmospheres, 122(3), 1569-1594.
- García-Valdecasas Ojeda, M., Rosa-Cánovas, J. J., Romero-Jiménez, E., Yeste, P., Gámiz-Fortis, S. R., Castro-Díez, Y., & Esteban-Parra, M. J. (2020). The role of the surface evapotranspiration in regional climate modelling: Evaluation and near-term future changes. Atmospheric Research, 237, 104867.
- Hu, Wei; Ma, Weiqiang; Yang, Zong-Liang; Ma, Yaoming; Xie, Zhipeng. (2023). Sensitivity Analysis of the Noah-MP Land Surface Model for Soil Hydrothermal Simulations Over the Tibetan Plateau. Journal of Advances in Modeling Earth Systems, 15. https://doi.org/10.1029/2022MS003136.
- Kalnay, E., & Coauthors (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 437-470.
- Kirtman, B., & Coauthors (2013). Near-Term Climate Change: Projections and Predictablility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
- Mendoza, Pablo; Clark, Martyn; Mizukami, Naoki; Gutmann, Ethan; Arnold, Jeffrey; Brekke, Levi; Rajagopalan, Balaji. (2016). How do hydrologic modeling decisions affect the portrayal of climate change impacts?.
- Miralles, D.G.; Gentine, P.; Seneviratne, S.I.; Teuling, A.J. (2019). Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Annals of the New York Academy of Sciences, 1436, 19-35. <u>https://doi.org/10.1111/nyas.13912</u>

Financiación: Proyecto PID2021.126401OB.I00. financiado por

MICIU/AEI/10.13039/501100011033 y por FEDER, UE. Ayuda para contrato predoctoral PRE2022-102458 financiada por MICIU/AEI /10.13039/501100011033 y por el FSE+.

Authors thankfully acknowledge RES resources provided by University of Valencia in Tirant to AECT-2023-2-0022.

