

Improved simulation of snowpack and leaf area index through the dynamic vegetation model in Noah-MP V5: insight into current and future model developments

Aniket Gupta¹, Ali Behrangi¹, Guo-Yue Niu¹ ¹Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson

INTRODUCTION

A

2

Accurate representation of canopy is necessary to predict snow water equivalent (SWE)

- Land surface models (LSMs) powerful tools for simulating the coupled processes governing snow accumulation, melt, and redistribution, as well as vegetation growth, productivity, and water use (Niu et al., 2011; He et al., 2023).
- Canopy cover in the LSMs can represented by two parameters:
 - Leaf area index (LAI)
 - Maximum green vegetation fraction (MGVF)
- LAI and MGVF can be dynamically calculated using vegetation carbon content, stomatal resistance and soil carbon content.

- Noah-MP, a state-of-the-art LSM has been setup for the exploring the impact of dynamic vegetation on the snow and leaf area index simulation.
- Simulation has been set-up at 1 km spatial and hourly temporal resolution over two HUC-4 catchment in California.
- We have used two sets of forcing data over both catchment which include National Water Model (NWM) retrospective forcing and NLDAS-2.
- NLDAS-2 forcing data has been downscaled to 1km using the WRF-Hydro Meteorological Forcing Engine (MFE).
- We have setup three kind of simulation using dynamic LAI, and combination of dynamic and gridded input MGVF.

Fig: 1. Study Area

ACRONYMS	DynVeg_Off	DynVeg_STR	DynVeg_GVF
LAI	Look up table	Dynamic	Dynamic
MGVF	Monthly climatology	Monthly climatology	Dynamic

3 vegetation options \times 2 forcing \times 2 catchments = 12 simulations

PRECIPITATION DOWNSCALING USING PRISM DATA

Fig: 2. Precipitation downscaling.

A

TEMPERATURE DOWNSCALING USING NCAR LAPSE RATE

Fig: 3. Temperature downscaling.

A

SWE SENSITIVITY TOWARDS DYNAMIC VEGETATION AND PRECIPITATION

Fig: 4. SWE variations across different simulations.

A

SWE COMPARISON AT CDWR STATIONS SITES IN CALIFORNIA

Fig: 5. SWE at station locations using nearest neighborhood method.

A

¹⁰ DIFFERENCE IN SWE IS THE RESULT OF CANOPY INTERCEPTION/SHADING

Fig: 6. Simulated LAI under different dynamic vegetation configurations.

A

CANOPY SHADING DELAYS THE PEAK SNOWMELT

Fig: 7. Snowmelt variations across different simulations.

A

IMPACT OF DYNAMIC VEGETATION ON SEASONAL/EPHEMERAL SNOW COVER

Fig: 8. Seasonal and ephemeral snow cover simulation under NLDAS2 forcing.

A

IMPACT OF DYNAMIC VEGETATION ON SEASONAL/EPHEMERAL SNOW COVER

Fig: 9. Seasonal and ephemeral snow cover simulation under NWM (AORC) forcing.

A

GRIDDED OBSERVATIONS ARE INCONSISTENT OVER HIGHER ALTITUDE

Fig: 10. SWE variations across different altitude.

Conclusion

- Dynamic vegetation improves the SWE and LAI over California.
- These improvement accounts up to 20-30% of daily snow water equivalent
- NWM Retrospective forcing underestimates the precipitation over California.
 Perspective
- Running RAPID model to evaluate the impact of dynamic vegetation on streamflow generation.
- Demonstrate the role of dynamic vegetation on runoff, evapotranspiration and soil moisture flux partitioning.
- Implement the dynamic root uptake model to further improve the LAI and flux partitioning (Niu et al., 2020).

- Representing the fractional frozen soil permeability (Agnihotri et al., 2023; WRR).
- Representing the dual permeability (macro pores and micro pores) for enhanced preferential flow (Farmani et al., 2024; HESSD).
- Representing the surface ponding depth to capture the peak flows (Farmani et al., 2024; HESSD).

