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Motivation

Deep convection “gray zone”

~1 — 5-km grid spacing: relatively “high-resolution,” explicit convection (EC) often used
Assumes model is capable of explicitly resolving convection on grid scale

Many studies question aspects of this assumption: Grid spacing still too coarse to fully
resolve deep convection

* Bryan et al. 2003; Deng and Stauffer 2006; Lean et al. 2008; Bengtsson et al. 2012; Gerard 2015
Efforts to adapt convective parameterization schemes (CPSs) for gray-zone scales
* e.g.,, Gerard 2015; Liu et al. 2015; Bengtsson and Kornich 2016; Zheng et al. 2016




Motivation: Explicit convection benefits

* CP assumptions that break down with increasing horizontal resolution:

Limitations of “grid-box” state (i.e., growing importance of horizontal fluxes,
need for communication with neighboring grid points)

Cloud lifecycle/temporal mismatches, overlapping with explicitly-resolved
convection

Coarse approximations of effects of convection: latent heat release, etc.




Motivation: Benefits of employing CP at relatively fine grid spacings

Challenges with explicit convection only in gray zone? Can justify some CP to:

Avoid unrealistic buildup of CAPE, spurious convection, gridpoint storms/over-done
updrafts

— Supplement cloud microphysics parameterization where needed

— Represent shallow mixing (omission = spurious stratus cloud cover)

To what extent should “scale-aware” CP be pursued? Versus addressing via other
model parameterization schemes?
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Motivation: 2013 CO Front Range Floods

e 2013 Colorado Front Range Floods
— 10 - 18 inches of rain, catastrophic flooding in north/central Colorado
— Forecast challenges: role of model resolution, model physics?

— Model gray zone relevance: extensive spatial and temporal scale + embedded convection
* Breadth in space and time: sustained synoptic, mesoscale forcing = CP strengths?

* Intense convective episodes: mesoscale convective organization > EC strengths?

— Terrain-focused, yet significant forecast errors at many space, time scales

(a) Accumulated precipitation, -105.7°W, 39.8°N to -105.1° W, 40.3°N
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Study objectives

» Evaluate relative benefits of convective parameterization, explicit
convection for 2013 CO Front Range Flood in 4-km grid spacing
model deep convection “gray zone”

» Community-available CP schemes (formulated for, used across various
scales)

» Newly-developed, “scale-aware” Kain-Fritsch scheme

» Examine representation of convection both upstream and in location of
observed flooding
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Weather Research and Forecastlng (WRF) Model set-up
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Version 3.7.1
4-km horizontal grid spacing
Explicit convection (Control)

Thompson cloud
microphysics

CFSR initial, lateral boundary
conditions

72-h simulations

00 UTC 11 Sept—-00 UTC 14
Sept 2013



Weather Research and Forecasting (WRF) Model set-up
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Treatment of convective parameterization Experiment
name

Vil Explicit convection (No convective parameterization used) EC
i Kain-Fritsch (new Eta) scheme (Kain and Fritsch 1993) KF
Multi-scale Kain-Fritsch scheme (Zheng et al. 2016)
Betts-Miller-Janjic scheme (Janjic 1994)
Grell-Freitas ensemble scheme (Grell and Freitas 2013) GF

Old GFS simplified Arakawa-Schubert scheme (Pan and Wu 1995) SAS-old

New GFS simplified Arakawa-Schubert scheme (Han and Pan 2011) SAS-new



Results: 72-hour precipitation vs. observations
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72-hour total precipitation (mm)

 Two main areas of heavy precipitation:
“Upstream” central-eastern New Mexico
“Downstream” Colorado Front Range

* ECsimulation reasonably captures Front Range precipitation max (~250 mm/72 hours)



Results: 72-hour precipitation vs. observations — Colorado only

Observed (Stage V) "
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 Two main areas of heavy precipitation:
“Upstream” central-eastern New Mexico
“Downstream” Colorado Front Range

* ECsimulation reasonably captures Front Range precipitation max (~250 mm/72 hours)



72-hour precipitation differences: Explicit — CP experiments

EC — MSKF
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Large errors/differences in upstream NM, downstream CO Front Range regions — also across CO-KS border
KF, GF, and SAS-old schemes under-represent (> 100 mm difference) in heavily flood-impacted COFR




How active were the various CP schemes at 4-km grid spacing?
Convective precipitation only:
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e  Original KF most active, particularly upstream
e Scale-aware schemes notably less active



How active were the various CP schemes at 4-km grid spacing?
Convective precipitation only:

114°W  112°W  110°W  108°W  106°W  104°W  102°W  100°W  98°W  96°W 14°W  112°W  110°W  108°W  106°W  104°W  102°W  100°W  98°W  96°W

4W 112°W 110°W 108°W  106°W  104°W  102°W  100°W E 98w

72-hour convective precipitation (mm)

KF, MSKF represent ends of the CP experiment spectrum = focus on EC, KF, MSKF



Influence of upstream CP error on downstream precipitation
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Influence of upstream CP errors on downstream precipitation:
Low-level PV and sea-level pressure

850 hPa — 650 hPa layer-average potential vorticity (PVU, shaded) and (terrain-corrected) sea-level pressure (hPa; black contours)
valid 12 UTC 12 September (36 hours into simulation period)

*  Low-level PV: latent heating “footprint” on low-level dynamic fields
*  KFsimulation:
— Heavy CP precip in eastern NM, CO - low-level PV maximum in eastern CO
— Surface low pressure deepens beneath, inverted ridge strengthens to west
— Diminished upslope flow in CO Front Range, enhanced forcing further northeast
*  EC, MSKF simulations = sustained low-level easterly flow in the COFR = prolonged upslope precipitation



Influence of upstream CP errors on downstream precipitation

142 CPKF 7 /042 KFM:

700-hPa moisture flux (x10 g kg—1 m s—1, shaded & vectors, valid 18 UTC 12 September (42 hours into simulation)

* See evolution clearly in moisture flux/transport as well

* Upstream KF precip overdone; enhances moisture flux too far east (CO-KS);
disrupts moisture flux and upslope flow in CO Front Range



Summary and future work

» 2013 Colorado Front Range flood simulations run in 4-km Ax “deep convection gray zone”

» Large sensitivity to CPS choice in Colorado Front Range (COFR), eastern New Mexico (ENM)
» KF, GF, and SAS-old schemes: active CP upstream in NM; far under-predict (> 100mm) in COFR

» Greater CPS activity upstream - errors in latent heating and low-level flow/moisture transport -
significant downstream model error

» New scale-aware KF scheme very similar to EC simulation/observations

» Notable sensitivity:
» Experiments run as simulations (i.e., boundaries updated with analyzed — not forecast — conditions)

» 4-km Ax: expect most precipitation to be explicit

» Surprising that CPS choice at these space, time scales = 3-day precipitation differences > 100 mm?
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Summary and future work

» ~4-km Ax increasingly common for operational weather, regional climate
» Explicit convection likely best for extreme precipitation, propagating convection

» Omission of CP may be problematic for climate simulation of land-surface, PBL, shallow mixing
processes

» Do we really understand the types of cases, events, environments where even scale-aware CP
may fail? Where EC fails?

» How to best address gray zone considerations of shallow convection, PBL
mixing/processes, etc?

» Treat separately and forego CP from now on, or dig into scale-aware CP?
» Future work: Assess NA-CORDEX extreme precipitation for related issues

Direct Interactions of Parameterizations
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