

Added value and land-atmosphere coupling in convection-permitting WRF climate simulations over a Middle European domain

September 7, 2016 | Klaus Goergen^{1,2}, Sebastian Knist^{2,3,4}, Stefan Kollet^{1,2}, Clemens Simmer^{3,4}, Harry Vereecken^{1,2}

¹ Institute of Bio- and Geosciences, Agrosphere (IBG-3), Research Centre Jülich, Jülich, Germany

² Centre for High Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich, Germany

³ Meteorological Institute, University of Bonn, Bonn, Germany

⁴ SimLab TerrSys, Jülich Supercomputing Centre, Research Centre Jülich, Jülich Germany

WRF convection-permitting runs – added value

Evaluation of precipitation

Land-atmosphere coupling

Coupling strength comparison

Motivation Benefits of high-resolution RCM simulations

- Better capture of small scale surface heterogeneities, orography, etc.
- More realistic representation of dynamical processes, e.g. local wind systems
- Error-prone convection parameterisation (esp. deep convection) switched off
- Better reproduction of intensities, timing, spatial distribution of precipitation (e.g., Ban et al., 2014; Kendon et al., 2014; Prein et al., 2014), etc.

WRF high resolution runs at JSC/MIUB Continuation of EURO-CORDEX simulations

- One-way **double-nesting** setup: **3 km** model domain inscribed in **12 km** CORDEX EUR-11 model grid, **ERA-Interim driven**, fair comparisons between resolutions
- Identical, climate-mode settings, switched-off deep convection scheme in 3 km runs
- Time slices: 1993-1995, 2002-2003, 2010-2013, hourly used for this study
- Done also MPI-ESM-LR RCP4.5 downscaling (1995-2005, 2040-2050, 2090-2100)

WRF high resolution runs at JSC/MIUB Continuation of EURO-CORDEX simulations

- One-way **double-nesting** setup: **3 km** model domain inscribed in **12 km** CORDEX EUR-11 model grid, **ERA-Interim driven**, fair comparisons between resolutions
- Identical, climate-mode settings, switched-off deep convection scheme in 3 km runs
- Time slices: 1993-1995, 2002-2003, 2010-2013, hourly used for this study
- Done also MPI-ESM-LR RCP4.5 downscaling (1995-2005, 2040-2050, 2090-2100)

WRF high resolution runs at JSC/MIUB Continuation of EURO-CORDEX simulations

- One-way **double-nesting** setup: **3 km** model domain inscribed in **12 km** CORDEX EUR-11 model grid, **ERA-Interim driven**, fair comparisons between resolutions
- Identical, climate-mode settings, switched-off deep convection scheme in 3 km runs
- Time slices: 1993-1995, 2002-2003, 2010-2013, hourly used for this study
- Done also MPI-ESM-LR RCP4.5 downscaling (1995-2005, 2040-2050, 2090-2100)

WRF convection-permitting runs – added value

Evaluation of precipitation

Land-atmosphere coupling

Coupling strength comparison

Example of typical precipitation event Impact of resolution on precipitation, 3 km vs. 12 km

- Here: Typical frontal system with stratiform precipitation
- Smaller differences for grid scale precipitation
- Some local differences but spatial distribution, intensity, amounts fairly similar

September 7, 2016

K. Goergen | GEWEX CPCM Workshop 2016 | Boulder, CO

Example of typical precipitation event Impact of resolution on precipitation, 3 km vs. 12 km

- Here: Convective events during summer
- Larger differences in spatial pattern, local intensity and daily temporal evolution
- More precipitation in 12 km, smaller intensities

September 7, 2016

Evaluation of 3 km added value for precipitation Sub-daily precipitation statistics

1096 German Weather Service (DWD) synop stations, hourly

blue ≤ 400 m a.s.l green > 400 m a.s.l red > 900 m a.s.l

Other comparison datasets, e.g. HErZ re-analysis ≈6 km, ≈2.2 km (Bollmeyer et al., 2015)

Evaluation of 3 km added value for precipitation Sub-daily precipitation statistics

1096 German Weather Service (DWD) synop stations, hourly

blue ≤ 400 m a.s.l green > 400 m a.s.l red > 900 m a.s.l

Boxes: analysis regions for Lowlands, Uplands and Alps

Other comparison datasets, e.g. HErZ re-analysis ≈6 km, ≈2.2 km (Bollmeyer et al., 2015)

Precipitation diurnal cycle during Summer Comparison to DWD station data

Mean diurnal cycle averaged over all stations (nearest neighbour gridpoint)

JJA, 9 years

Including dry days

• Wet bias in all simulations during daytime, larger in 12 km

Improved timing and shifted diurnal cycle of precipitation in 3 km resolution

September 7, 2016

Precipitation diurnal cycle during Summer Topography-related differences (analysis boxes) Mean diurnal cycle JJA

Hourly precipitation distribution and extremes Comparison to DWD station data, Summer

Hourly precipitation distribution and extremes Comparison to DWD station data, Winter

Mitglied der Helmholtz-Gemeinschaft

K. Goergen | GEWEX CPCM Workshop 2016 | Boulder, CO

Hourly precipitation distribution and extremes Comparison to DWD station data, Winter

Mitglied der Helmholtz-Gemeinschaft

WRF convection-permitting runs – added value Evaluation of precipitation

Land-atmosphere coupling

Coupling strength comparison

Land-atmosphere coupling analysis Connection of (sub-)surface to the atmosphere

Terrestrial segment of feedback loop: Sensitivity of surface fluxes to soil moisture states

Focus here: soil moisture-temperature coupling (e.g., relevant for heat waves)

Land-atmosphere coupling analysis Connection of (sub-)surface to the atmosphere

Terrestrial segment of feedback loop: Sensitivity of surface fluxes to soil moisture states

Focus here: soil moisture-temperature coupling (e.g., relevant for heat waves)

Different integrative metrics for coupling strength: e.g. correlation of sensible and latent heat flux (alternative, e.g., corr(T2,LE))

Land-atmosphere coupling analysis Connection of (sub-)surface to the atmosphere

Terrestrial segment of feedback loop: Sensitivity of surface fluxes to soil moisture states

Focus here: soil moisture-temperature coupling (e.g., relevant for heat waves) Different integrative metrics for coupling strength: e.g. correlation of sensible and latent heat flux (alternative, e.g., corr(T2,LE))

Corr. of latent and sensible heat flux, JJA, FLUXNET

Mitglied der Helmholtz-Gemeinschaft

K. Goergen | GEWEX CPCM Workshop 2016 | Boulder, CO

Coupling strength corr(H,LE), 3 km WRF, JJA **Contrasting individual years**

corr(H,LE), daily, jja 2012

200

0

100

300

400

0.8

0.6

-0.2

Coupling strength corr(H,LE), 3 km WRF, JJA **Contrasting individual years**

400

400

400

corr(H,LE), daily, jja 1994

200

400 1994

300

200

100

2002

20

100

200

300

400

300

200

100

400

corr(H,LE), daily, jja 1995

200

300

100

400

0.6

0.4

0.2

corr(H,LE)),

Coupling

couplin

strong

-0.2

-0.4

-0.6

Cooler, more moist mountain areas stand out

Coupling strength corr(H,LE), 3 km WRF, JJA **Contrasting individual years**

400

100

100

200

200

300

400

1994

400

300

200

100

Contrasting years: veak coupling 2002, wet, cloudy (weak coupling) VS. 2003, dry, hot (strong coupling) with heat wave in August strength daily Cooler, more moist <u>.</u>

0.6

04

0.2

Couplin

strong coupling

-0.2

-0.4

-0.6

-0.8

400

300

mountain areas stand out гĤ.

Large interannual variability consistent with weather conditions in the individual years

400

300

200

100

September 7, 2016

September 7, 2016

Impact of surface heterogeneity

September 7, 2016

Mitglied der Helmholtz-Gemeinschaft

Impact of surface heterogeneity

Sensitivity studies with combinations of coarse and fine resolution soil, landuse and orography ongoing; explore interactions further

Stronger cpl. in 3 km resolution

Consistent with wetter conditions (more rain) in 12 km run

Summary and outlook

- WRF convection-permitting evaluation runs (3 km, Central Europe)
 - Added value of convection-permitting resolution
 - Better reproduction of sub-daily precipitation statistics

Summary and outlook

- WRF convection-permitting evaluation runs (3 km, Central Europe)
 - Added value of convection-permitting resolution
 - Better reproduction of sub-daily precipitation statistics
- Land-atmosphere coupling analysis
 - Large interannual variability for Central Europe consistent with climate conditions
 - Slightly stronger coupling in 3 km resolution, needs further investigation

Summary and outlook

- WRF convection-permitting evaluation runs (3 km, Central Europe)
 - Added value of convection-permitting resolution
 - Better reproduction of sub-daily precipitation statistics

Land-atmosphere coupling analysis

- Large interannual variability for Central Europe consistent with climate conditions
- Slightly stronger coupling in 3 km resolution, needs further investigation
- Ongoing
 - Influence of land use and its heterogeneity on land-atmosphere coupling, sensitivity studies, low vs. high-resolution soil, vegetation, topography data
 - High-resolution climate change control and projection runs (MPI-ESM RCP 4.5 downscaling, 1993-2005, 2038-2050, 2088-2100) analysis pending
 - Coupling strength in context of climate change in EURO-CORDEX RCM ensemble future scenario runs
 - Link to EURO-CORDEX FPS "Convective phenomena at high resolution over Europe and the Mediterranean"

Other ongoing CPM activities and an open position

k.goergen@fz-juelich.de www.hpsc-terrsys.de

Vacancy:

Experienced PostDoc as Scientific Coordinator of SimLab Terrestrial Systems at Juelich Supercomputing Centre

www.geoverbund.de

Closing: 30 September 2016

September 7, 2016