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Severe thunderstorm (Significant Severe)
« Tornado (F/EF2+)
« Wind = 50 knots (265 knots)
 Hail21” (2 2 inches)

Hazards associated with severe convection have
iImportant social and economic impacts

* Risk to life and property

Q: How might severe thunderstorm activity respond
to anthropogenic climate change ?



APPLICATION TO GLOBAL CLIMATE MODEL PROJECTIONS

- Convective parameters, namely convective available Egm_
potential energy (CAPE) and 0-6 km vertical wind shear ¢
(S06) !
+ NDSEV = CAPE * S06 = X (X is usually 10,000 or 20,000) v rere 8
« Many recent studies 'i
« 1 mean CAPE, | mean S06, 1NDSEV =
Limitations E
« Storms must be initiated in order to realize environment/CAPE! o TR e
* Neglects “lift” ingredient 'E 10 ]
« Must assume that “efficiency” of environment remains the same g 20
in future climate E ol
« Environments are an overestimate in occurrence and coverage 2 20w
« Unable to infer risk for individual hazard type due to environment H go o2 %0
overlap £ 60-
Alternative approach E 2]
. High-resolution dynamical downscaling < ]

«  Use IC/BC from GCM to drive high-resolution (~4 km) NDEEV changs (enwceson) 1960 2040 2100
convection-permitting model Diffenbaugh et al. (2013)

24 12 _ 0 2 24
. Let the model develop relationship between environmental

conditions and events PURDUE
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« High-resolution, convection-allowing (~4
km) WRF simulations (reanalysis/GCM)

« Reasonably recreate observed climatology
using a model proxy

« Gensini and Mote (2015) downscaled
CCSMa for future climate
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Build upon literature

* Alonger term (~30 year) climatology of
historical and future synthetic severe

climatologies from GCMs T e e & —1g
« Simulate entire annual cycle gl u/j Y
. . . \
« What do we gain by downscaling? = 5
— Are we getting same story as ﬁt{
environment approach? “%
Y B /:JJ‘?
: o
Outline: | 1 d
1. Data and Methods 7 iy
2. GCM environment changes \ ! >R
3. Downscaled estimates of HCW " ? ? ?
4. Comparing approaches

— l.e. relationship between
environment response and storms
produced via dynamical

downscaling j[ PURDUE




GFDL-CM3

Coupled atmosphere-ocean model
2° x 2.5° lat/lon grid (=200 km)
model top of 1 hPa, 48 vertical levels

High-performing GCM compared to
NCEP-NCAR reanalysis and
radiosonde observations for
simulated CIN, CAPE and NDSEV

« Diffenbaugh et al. 2013; Seeley
and Romps 2015

Historical and RCP8.5 experiments
 Member rlilpl

delta Tref

GFDL-CM3 surface temperature change versus year 2000
(adjusted for control drift)

Historical
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http://www.qfdl.noaa.qov/couDlgd-DhVSicaI-modeI-cmS
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http://www.gfdl.noaa.gov/coupled-physical-model-cm3

REGIONAL CI_ I MATE MODEL . Simulation Domain

« WRF-ARW version 3.6
« CONUS domain
* 4 km horizontal grid spacing
« 45 vertical levels, 50 hPa model top

 Two time-slices
 Historical baseline:1971-2000
e Future: 2071-2100

S HOUI’|y OUtpUt Parameterizations
. L. Microphysics Thompson (Thompson et al. 2008)
e Post processed with NCEP Unified Radiation (LW/SW) RRTM/Dudhia (Miawer et al. 1997/Dudhia 1989)
. Land surface Noah (Chen and Dudhia 2001)

Post Processor (>25O Varlables) Planetary Boundary Layer Md Niino 2004, 2006)
Horizontal grid spacing 4 km

O Converted to G RI BZ Domain size 799 x 1149 grid points
Vertical levels 45

1 1 Time step adaptive
[ ~ -
65-70 TB for 60 years of simulations  [fheste s
Initial/Boundary Conditions

Temperature, specific humidity,
geopotential height, u and v wind,  Surface, near-surface, 40 isobaric levels; 6-h intervals
surface pressure
Soil temperature, soil moisture 0-10, 10-40, 40-100, 100-200 cm

Land use/land cover USGS 30” with lake category




Daily 0600 UTC re-initialization

« 30 hour integration, first 6 forecast hours discarded due to spin-up
« Runs valid 1200-1200 UTC

* Not widely used in downscaling future climate; more common with reanalyses to retain
sequence of observed weather events (e.g. Trapp et al. 2011, Robinson et al. 2013)

« Hong and Kanamitsu (2014) advocate for the frequent re-initialization or spectral
nudging approach to limit error growth within the domain

Advantages

« Generate mesoscale details and still preserve consistency of large-scales between
RCM and GCM

« Allows for parallelism of simulations

Disadvantages
« Discontinuous across re-initialization point
« Boundaries from previous convection not carried over

« Long memory processes not accounted for (e.g. soil moisture)
Secondary importance to atmospheric forcing (Pan et al. 1999)

Assuming these adequately handled by GCM PURDUE




ANNUAL ANOMALIES (% CHANGE RELATIVE TO 1971-2000 MEAN)

* Projected changes in
environments
favorable for HCW

« NDSEV,, =

sig —

CAPE x S06 = 20,000

CAPE = 100 J kg
S06=25mst
CIN 2 -100 J kgt

Interpolated to 1°
lat/lon grid

occurs when threshold
IS met at anytime
between1200-1200
UTC

Anomaly (%)

. Mean CONUS NDSEV,;,, Day Anomaly

Experiment GFDL-CM3
=== Historical
600} mmm RCP 4.5

=== RCP 8.5
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-CONUS regional mean (land points only)

-Smoothed with Gaussian filter (0=5 years)
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FUTURE CHANGES
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SUMMARY

Like other GCMS, GFDL CM3 depicts:
1 sfc temperature, specific humidity
T CAPE, CIN

| S06 (concentrated on days with lower
CAPE)

1 NDSEV,

Changes largely a result of robust increases in
CAPE

Overall “season” is lengthened

Other parameters show marked increase also
(e.g., STP, SCP, EHI)

12
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IDENTIFYING A SIMULATED STORM

« Cannot explicitly simulate severe hazards at 4 km
grid spacing, so we must use a model proxy

 Hourly maximum updraft helicity (UH)
» Mid-level mesocyclone detection
« Commonly used in short term severe storm
forecasting
« 50m2s?2minimum threshold (~99.995
percentile)

5km
UH =| wdaz

2km

» Focus on proxy “day” occurrences tallied within 1°
lat/lon bounding boxes
—*Yes” if any grid point within lat/lon bounding box
exceeds the specified threshold at anytime over
the 24-hour period (1200-1200 UTC)
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CHANGES IN DAYS WITH UH > 50 m? s-2
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CHANGES IN DAYS WITH UPDRAFT VERTICAL VELOCITY >20 m s
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MAM Mean Standardized Anomaly

NDSEV,;, Days Mean Days with UH >50 m?s 2

Historical 0.888 0.912 0.895 0.784
17 future 0.983 0.930 0.947 0.865 SITY
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MONTHLY MEAN NDSEVg,; DAYS VS. MONTHLY MEAN UH DAYS
CONUS
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This study produced high-resolution, dynamically downscaled simulations
from GFDL-CM3

1. 2 30-yr periods (1971-2000 and 2071-2100 (RCP8.5))
2. Entire annual cycle captured

3. Insight into the storm-scale response to changes in ambient environmental
conditions

Consistent agreement between GCM and RCM in terms of areas of
increased/decreased days of activity

 The “when and where”, but environments alone cannot infer the “how much”

Changes in environment efficiency between historical and future periods
« Addresses initiation problem
*Environment-event relationship has weakened
«Justifies downscaling approach
Cause(s)?
Weakening circulation
« Chang (2012) found reduction in extratropical cyclones in all seasons
(e.g.-24.5% in JJA)
* Coumou (2015) decrease in JJA eddy kinetic energy
Increased CIN




200000

Hazard type |
« Hail, wind, tornadoes .
Variability and sub-daily frequency of HCW

Convective mode

0

* object based approaches e

Perform continuously integrated simulations
to compare

Cumulative Frequency of maxUH >50 m?s 2

1971-2000
2071-2100
= 1971-2000 mean 7
== 2071-2100 mean Y/t
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QUESTIONS?

"Essentially, all models are wrong, but some are useful."

Box, G. E. P. and N. R. Draper,1987: Empirical Model-Building and Response Surfaces, p. 424, Wiley.

kKhoogewi@illinois.edu
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