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INTRODUCTION

• Severe thunderstorm (Significant Severe)

• Tornado (F/EF2+)

• Wind ≥ 50 knots (≥65 knots)

• Hail ≥ 1” (≥ 2 inches)

• Hazards associated with severe convection have 
important social and economic impacts

• Risk to life and property

• Q: How might severe thunderstorm activity respond 
to  anthropogenic climate change ? 

HAZARDOUS CONVECTIVE WEATHER (HCW)
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Walker Ashley,

http://newsroom.niu.edu/2015/04/10/in-the-eye-of-the-storm/

May 31, 1998 Derecho



• Convective parameters, namely convective available 

potential energy (CAPE) and 0-6 km vertical wind shear 

(S06)

• NDSEV = CAPE * S06 ≥ X  (X is usually 10,000 or 20,000)

• Many recent studies

• ↑ mean CAPE, ↓ mean S06, ↑NDSEV

Limitations

• Storms must be initiated in order to realize environment/CAPE!

• Neglects “lift” ingredient

• Must assume that “efficiency” of environment remains the same 

in future climate

• Environments  are an overestimate  in occurrence and coverage

• Unable to infer risk for individual hazard type due to environment 

overlap

Alternative approach

• High-resolution dynamical downscaling

• Use IC/BC from GCM to drive high-resolution (~4 km) 

convection-permitting model

• Let the model develop relationship between environmental 

conditions and events

ENVIRONMENTAL CONDITIONS
APPLICATION TO GLOBAL CLIMATE MODEL PROJECTIONS
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Diffenbaugh et al. (2013)



DYNAMICAL DOWNSCALING
PREVIOUS WORK WITH DOWNSCALING HCW

• High-resolution, convection-allowing (~4 

km) WRF simulations (reanalysis/GCM)

• Reasonably recreate observed climatology 

using a model proxy

• Gensini and Mote (2015) downscaled 

CCSM3 for future climate

Trapp et al. (2011)

Robinson et al. (2013)
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Gensini and Mote (2015)



RESEARCH OBJECTIVE
Build upon literature

• A longer term (~30 year) climatology of 

historical and future synthetic severe 

climatologies from GCMs

• Simulate entire annual cycle

• What do we gain by downscaling?

– Are we getting same story as 

environment approach?

Outline:

1. Data and Methods

2. GCM environment changes

3. Downscaled estimates of HCW

4. Comparing approaches

– i.e. relationship between 

environment response and storms 

produced via dynamical 

downscaling
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GCM SELECTION

• Coupled atmosphere-ocean model

• 2º x 2.5º lat/lon grid (~200 km)

• model top of 1 hPa, 48 vertical levels

• High-performing GCM compared to 

NCEP-NCAR reanalysis and 

radiosonde observations for 

simulated CIN, CAPE and NDSEV

• Diffenbaugh et al. 2013; Seeley 

and Romps 2015

• Historical and RCP8.5 experiments

• Member  r1i1p1

GFDL-CM3

http://www.gfdl.noaa.gov/coupled-physical-model-cm3
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http://www.gfdl.noaa.gov/coupled-physical-model-cm3


RCM MODEL SETUP

• WRF-ARW version 3.6

• CONUS domain

• 4 km horizontal grid spacing

• 45 vertical levels, 50 hPa model top

• Two time-slices

• Historical baseline:1971-2000

• Future: 2071-2100 

• Hourly output

• Post processed with NCEP Unified 

Post Processor (>250 variables)

• Converted to GRIB2

• ~65-70 TB for 60 years of simulations

REGIONAL CLIMATE MODEL

Parameterizations

Microphysics Thompson (Thompson et al. 2008)

Radiation (LW/SW) RRTM/Dudhia (Mlawer et al. 1997/Dudhia 1989)

Land surface Noah (Chen and Dudhia 2001)

Planetary Boundary Layer MYNN (Nakanishi and Niino 2004, 2006)

Model Parameters

Horizontal grid spacing 4 km

Domain size 799 x 1149 grid points

Vertical levels 45

Time step adaptive

Buffer zone 10 grid points

Initial/Boundary Conditions

Temperature, specific humidity, 

geopotential height, u and v wind, 

surface pressure
Surface, near-surface, 40 isobaric levels; 6-h intervals

Soil temperature, soil moisture 0-10, 10-40, 40-100, 100-200 cm

Land use/land cover USGS 30” with lake category
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INTEGRATION PROCEDURE
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Daily 0600 UTC re-initialization

• 30 hour integration, first 6 forecast hours discarded due to spin-up

• Runs valid 1200-1200 UTC

• Not widely used in downscaling future climate; more common with reanalyses to retain 

sequence of observed weather events (e.g. Trapp et al. 2011, Robinson et al. 2013)

• Hong and Kanamitsu (2014) advocate for the frequent re-initialization or spectral 

nudging approach to limit error growth within the domain

Advantages

• Generate mesoscale details and still preserve consistency of large-scales between 

RCM and GCM

• Allows for parallelism of simulations

Disadvantages

• Discontinuous across re-initialization point

• Boundaries from previous convection not carried over

• Long memory processes not accounted for (e.g. soil moisture)
• Secondary importance to atmospheric forcing (Pan et al. 1999)

• Assuming these adequately handled by GCM



GCM SEVERE ENVIRONMENT DAYS

• Projected changes in 

environments 

favorable for HCW

• NDSEVsig = 

CAPE x S06 ≥ 20,000
• CAPE ≥ 100 J kg-1

• S06 ≥ 5 m s-1

• CIN ≥ -100 J kg-1

• Interpolated to 1º 

lat/lon grid

• occurs when threshold 

is met at anytime 

between1200-1200 

UTC
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ANNUAL  ANOMALIES (% CHANGE RELATIVE TO 1971-2000 MEAN)

-CONUS regional mean (land points only)

-Smoothed with Gaussian filter (σ=5 years) 



SEVERE ENVIRONMENT DAYS
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FUTURE CHANGES



PROBABILITY BY CALENDAR DAY
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GCM ENVIRONMENT

• Like other GCMS, GFDL CM3 depicts:

↑ sfc temperature, specific humidity

↑ CAPE, CIN

↓ S06 (concentrated on days with lower 

CAPE)

↑ NDSEVsig

• Changes largely a result of robust increases in 

CAPE

• Overall “season” is lengthened

• Other parameters show marked increase also 

(e.g., STP, SCP, EHI)
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SUMMARY JJA ∆q

JJA ∆CAPE



DOWNSCALING RESULTS
IDENTIFYING A SIMULATED STORM

13

• Cannot explicitly simulate severe hazards at 4 km 

grid spacing, so we must use a model proxy

• Hourly maximum updraft helicity (UH) 

• Mid-level mesocyclone detection

• Commonly used in short term severe storm 

forecasting

• 50 m2 s-2 minimum threshold (~99.995 

percentile)

• Focus on proxy “day” occurrences tallied within  1º  

lat/lon bounding boxes

―“Yes” if any grid point within lat/lon bounding box 

exceeds the specified threshold at anytime over 

the 24-hour period (1200-1200 UTC)


km

km
dzwUH
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SEASONAL CHANGES
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CHANGES IN DAYS WITH UH > 50 m2 s-2

DJF

JJA

MAM

SON



SEASONAL CHANGES
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CHANGES IN DAYS WITH UPDRAFT VERTICAL VELOCITY > 20 m s-1

DJF

JJA

MAM

SON



PROBABILITY BY CALENDAR 

DAY
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GCM VS. RCM
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DJF MAM JJA SON

Historical 0.888 0.912 0.895 0.784

future 0.983 0.930 0.947 0.865



GCM VS. RCM
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MONTHLY MEAN NDSEVSIG DAYS VS. MONTHLY MEAN UH DAYS

1971-2000

2071-2100



SUMMARY AND CONCLUSIONS
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• This study produced high-resolution, dynamically downscaled simulations 
from GFDL-CM3 

1. 2 30-yr periods (1971-2000 and 2071-2100 (RCP8.5))

2. Entire annual cycle captured

3. Insight into the storm-scale response to changes in ambient environmental 
conditions

• Consistent agreement between GCM and RCM in terms of areas of 
increased/decreased days of activity

• The “when and where”, but environments alone cannot infer the “how much”

• Changes in environment efficiency between historical and future periods

• Addresses initiation problem

•Environment-event relationship has weakened

•Justifies downscaling approach

• Cause(s)?

• Weakening circulation

• Chang (2012) found reduction in extratropical cyclones in all seasons

(e.g. -24.5% in JJA)

• Coumou (2015) decrease in JJA eddy kinetic energy

• Increased CIN

earthobservatory.nasa.gov



ONGOING/FUTURE WORK
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• Hazard type

• Hail, wind, tornadoes

• Variability and sub-daily frequency of HCW

• Convective mode

• object based approaches

• Perform continuously integrated simulations 

to compare



THANK YOU!
QUESTIONS?
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"Essentially, all models are wrong, but some are useful."

Box, G. E. P. and  N. R. Draper,1987: Empirical Model-Building and Response Surfaces, p. 424, Wiley. 

khoogewi@illinois.edu
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