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informed by quantitative models.



A pathway for informing decisions

Establish objectives and
|dentify, acquire, and/or simulate

Formulate
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Decision-oriented

Measurable



What is the probability of an infected traveler
arriving and initiating local transmission in




Outcome-oriented
Training & testing
Future availability

Public



1. Incidence
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1. Incidence
2. Movement

Long-term change
Differences for cases
Response to epidemic




1. Incidence
2. Movement
3. Transmissibility
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Probability of local transmission
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Make predictions public
Use a baseline

Evaluate on external data
Estimate accuracy

Compare uncertainty
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Abstract

Background: In December 2013, the first locally-acquired chikungunya virus (CHIKV) infections in the Americas were
reported in the Caribbean. As of May 16, 55,992 cases had been reported and the outbreak was still spreading. Identification
of newly affected locations is paramaunt to intervention activities, but challenging due to limitations of current data on the
outbreak and on CHIKV transmission. We developed models to make probabilistic predictions of spread based on current
data considering these limitations.

Methods and Findings: Branching process models capturing travel patterns, local infection prevalence, climate dependent
transmission factors, and associated uncertainty estimates were developed to predict probable locations for the arrival of
CHIKV-infected travelers and for the initiation of local transmission. Many international cities and areas close to where
transmission has already occurred were likely to have received infected travelers. Of the ten locations predicted to be the
most likely locations for introduced CHIKV transmission in the first four months of the outbreak, eight had reported local
«cases by the end of April. Eight additional locations were likely to have had introduction leading to local transmission in
April, but with substantial uncertainty.

Conclusions: Branching process models can characterize the risk of CHIKV intreduction and spread during the ongoing
outbreak. Local transmission of CHIKV is currently likely in several Caribbean locations and possible, though uncertain, for
other loations in the continental United States, Central America, and South America. This modeling framework may also be
useful for other outbreaks where the risk of pathogen spread over heterogeneous transportation networks must be rapidly
assessed on the basis of limited information.
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Uncertainties
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Estimated suitability for Aedes aegypti

Kraemer et al, eLife, 2015



Complex interactions
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Dengue in Puerto Rico

4000
| |

I

2000

Reported cases (monthly)

O

I

|

S

|
1985

|
1990

|
1995

I
2000

I
2005

I
2010



What will the peak incidence be?
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Dengue Forecasting Project

Peak incidence, peak timing, and total cases
Public data release: San Juan and Iquitos
(inc. serotype + environmental)
Testing/training, quantitative metrics
Any

predict.phiresearchlab.org
dengueforecasting.noaa.gov






NCEP Operational Forecast SKill

36 and 72 Hour Forecasts @ 500 MB over North America
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