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Convection and Climate Motivation

• The intersection of weather and climate 

requires improved understanding of clouds and 

mesoscale processes 

• A fundamental understanding of the global

nature of clouds and their physical processes

is imperative for understanding global weather 

and climate



Convection and Climate Motivation
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meteorology 
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permitting 
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 Global satellite 

observations
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Accurately representing convection and 

precipitation in a future climate requires 

high resolution simulations at 

convection and terrain-resolving scales

 Pseudo-Global Warming (PGW) approach 
(Schar et al. 1996; Sato et al. 2007; Hara et al. 2008; Kawase

et al. 2009; Rasmussen et al. 2011; Liu et al. 2016)

 This approach was used to study the Colorado headwaters 

region (Rasmussen et al. 2011) and was recently expanded to 

the entire contiguous United States (Liu et al. 2016) by a large 

team at NCAR/RAL/MMM
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WRF CONUS Experiment Setup

• V3.4.1 WRF model with a 4-km-spacing

domain of 1360x1016x51 points

• Physics parameterizations: 

1. Thompson aerosol-aware 

microphysics

2. Noah-MP LSM

3. YSU PBL

4. RRTMG radiation

• Use of spectral nudging

• Novel methodology for devising forcing

from CMIP5 projections

- CMIP5 19 model ensemble mean climate

WRF Model Domain

Elevation (m)

U.S. Great Plains Region



• Compute 30-year CMIP5 19 model ensemble monthly mean

– Historical period : 1976-2005 Future period (RCP8.5): 2071-2100

• Compute perturbation – difference between two climates

• Add perturbation to the 6-hourly ERA-I data

• No change in storm tracks 

Same transient spectra

Pseudo Global Warming (PGW) Approach

6 hourly ERA-I data 

Monthly mean of 

historical condition

CMIP5 1976-2005

Monthly mean of 

future condition

CMIP5 2071-2100

Monthly 

perturbation of 

CMIP5 ensemble 

mean

WRF Inputs for Future Climate Simulation

WRF MODEL



• EXP1: Retrospective/Control (CTRL) simulation

- forced with ERA-I reanalysis

- 13-year continuous integration:  

Oct. 1 2000 – Oct. 1 2013

• EXP2: Pseudo-Global Warming (PGW) 

simulation

- forced with ERA-I plus climate perturbation

- DRCP8.5 = CMIP52071-2100 – CMIP51976-2005

- 13-year continuous integration 

CONUS Project Numerical Experiments

Liu et al. (2016)
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Work in Progress

How does precipitation and 

atmospheric moisture change in a 

future climate?
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How does the convective 

population change in a future 

climate?



Changes in the convective population

Methodology:

• Use the WRF PGW experiment hourly output (CTRL and 

PGW runs) to calculate the frequency of occurrence 

within six reflectivity ranges

• Compare the convective populations by taking the 

difference (PGW-CTRL)
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Changes in the convective population

(b) July-August

(a) May-June

• Reduced frequency of 

low reflectivity ranges

• Increased frequency of 

high reflectivity ranges

• Indicates changes in the 

convective population 

in a future climate



How does the thermodynamic 

environment supporting 

convection change in a future 

climate?



The deepest convective storms on Earth occur near major 

mountain ranges (Zipser et al. 2006; Houze et al. 2015)

 Combination of low level moisture advection and an upper level 

capping inversion inhibiting convection

Most Intense Thunderstorms on Earth

Flash rate (#/min)

0-2.9 2.9-32.9 32.9-126.7 126.7-314.7 314.7-1389



Environments supporting the deepest convection on Earth 

have both convective instability and convective inhibition

Allows for the build-up of convective energy that is critical for 

generating deep intense convection

 Look at thermodynamic environments in the PGW experiments

Most Intense Thunderstorms on Earth

Flash rate (#/min)

0-2.9 2.9-32.9 32.9-126.7 126.7-314.7 314.7-1389



Thermodynamic environment (MJ)
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Thermodynamic environment (JA)
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CAPE and CIN Comparison
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CAPE expected to increase in future climate

• CAPE results from the PGW CONUS runs are consistent 

with Romps (2015) 

Romps (2015)



Thermodynamics sounding comparison

• Sounding comparison from Corpus Christi, Texas



Thermodynamics sounding comparison

• Sounding comparison from Corpus Christi, Texas



CIN difference (PGW – CTRL)CAPE difference (PGW – CTRL)

CAPE difference (J kg-1)

Thermodynamic response

CAPE and CIN are increasing across the continental U.S. 

Could explain changes in the convective population



• Changes in the convective population
 Decreases in low to mid reflectivity ranges, increases in high 

reflectivity ranges

 Fewer weak storms, more extreme storms

 Large changes in the convective population over the U.S. Great 
Plains

• Thermodynamic environment changes
 CAPE increases everywhere – More energy available for 

convection

 CIN increases everywhere – More energy inhibiting convection, 
stronger capping inversion to break through

 Increases in both CAPE and CIN support a changing convective 
population in a future climate  fewer weak storms and more 
extreme storms

Conclusions



Questions?


