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Levels

• Level 0
– LCZ and derivative work is doing great!

• Level 1
– Start resolving individual buildings
– Produce improve urban parameterization…

• Level 2
– Develop novel and impact urban planning and design 

applications
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Cities

• Most people live in smaller cities
• US:
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Cities

• Most people live in smaller cities
• Europe:
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Problem: Missing Data

• >80% of the people living in cities are NOT 
in big metropolis

• Large metropolis are data rich but the 
cities where most people live are NOT 
data rich
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Problem: Missing Data

• Typical Data and Limitations

(scarcity and missing data only exacerbated in small/med cities)

Limited details, 
missing data

[He et al. 2022]
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Worldview Aerial OSM: crowd-sourcedPlanetLabs

$$$, medium details, 
missing data

High details, 
low coverage,
missing data

High details, 
low coverage,
missing data



Solution: Digital Synthetic Cities

• Generate a “statistically similar” synthetic building and/or city

• Use whatever crowd-sourced and captured data is available (e.g., 
OSM, satellite-if-any)
– It provides data that is incomplete but highly varied

• Then a deep generative network can learn the generalized “style” 
(i.e., distribution) from a noised large-scale dataset.
– Does not produce a perfect reconstruction, but is of a similar 

distribution and thus suitable for many types of simulations
– Output is fully synthetic and annotated so numerous what-if scenarios 

can easily be performed
• i.e., “see more than we can see”
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Solution (1 of N): 
Capture a subset and generate
• Satellite images: generate hi-res segmentation from low-res

Our Method Ground TruthBLS + cGANU-Net + BLS ESRGAN + U-
Net

Satellite UNET + ESRGAN 

5-50% better than prior methods
[He et al. 2023]
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Solution (2 of N): 
Capture a subset and generate
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LandScan, JAXA, Segmentation

Parcel Estimator 
Training Parcel Generator Building Generator

Input: 
Heterogeneous 

Data

Output: 3D 
Procedural 

Model
Optimizer

• Satellite images: generate cities from low-res

[Zhang et al. 2021]



Solution (3 of N):
Capture subset and generate
• Produce procedural facades from partial data

Our Method

[Zhang et al. 2020a, Zhang et al. 2020b]
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Solution (4 of N):
Capture subset and generate
• From one ground image, produce entire bldg

Our Method

[Nishida et al. 2018, Bhatt et al. 2020]
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Solution (5 of N):
Capture subset and generate
• Use spatio-temporal satellite images to localize individual trees

Our Method

Accuracies of 87-97%[Firoze et al. 2022]
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Solution (6 of N):
Capture subset and generate
• Generate city layouts, then compute UCPs
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Input: Roads+Priors Output: Building Mass



Deep Generative 
Layout Generation

20



Deep Generative 
Layout Generation

• We trained a generative network based on large-scale open resource dataset. The network is 
trained to represent all possible urban layout styles into a series of normal distributions. 

• The well-pretrained model can synthetically generate realistic city blocks from normal distributions 
and marginal normal distributions indicated by user priors.
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OSM 2D building 
footprint

Global-Available 
DEM

Normal 
Distributions

Graph-Based 
Generative Network

Training

Realistic 3D building 
mass

Pretrained Network

Inference

Normal 
Distributions



Deep Generative 
Layout Generation

• Current status
– Tested/trained for 28 North American cities

• Height data is also produced (Austin collaboration)

– 100k city blocks
– 2M buildings
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Experiment: Comparison
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Experiment: Comparison

24

Ground truth

100% real data 
used

50% error 
injected into 
real data

50% of real 
data used



Experiment: Generate Chicago from 5% data

2/9/23 25

OSM shapefile Only use x% (5% etc.) Generate entire city



Experiment: Generate Chicago from 5% data
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Plan area ratio

Synthetic Generation Ground Truth from OSM

0

1



Experiment: Generate Chicago from 5% data
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Building surface to plan area ratio

Synthetic Generation Ground Truth from OSM

0

28.4635



Experiment: Generate Chicago from 5% data

2/9/23 28

Area-weighted building height

Synthetic Generation Ground Truth from OSM

0

442



L1 error using 5-100% of data

2/9/23 29

• With only 5% input, we can generate the 
entire city in the accuracy of:

• Plan area ratio: L1 error < 2m per pixel

• Building surface to plan area ratio: L1 error 
< 11% per pixel

• Area-weighted building height: L1 error < 
2.1 m per pixel

• Building height distribution: W-distance < 
1.6 per pixel



L2: Applications

• WRF-Urban
– As one application, we have run WRF-Urban 

forecasts and what-ifs for several cities:
• Chicago, Indianapolis, Austin

• Flooding

• Vehicular Traffic
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WRF-Urban Simulations

2/9/23 31

Surface Temperature



WRF-Urban Simulations
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Wind Speed



WRF-Urban Simulations
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Wind speed (m/s) Temperature (Degree Celsius)



Other Applications: 
Urban Cloud Control

[Garcia-Dorado et al. 2017] 34



Other Applications: 
Temperature Mitigation

[Garcia-Dorado et al. 2017, Patel 2022] 35



Other Applications: Urban Greening
Temperature Humidity Rainfall

Northeast greening

Southeast greening

-1°C +1°C -5% +5% +20mm-20mm

Indianapolis

“Hot city”

“Cool city”

[Aliaga et al. 2013] 36



Linear Regression 
Logarithmic Linear Regression 
Pearson correlation coefficients

Other Applications: Urban Flooding
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Other Applications: Urban Traffic
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Solutions:

Travel Time: 30 min
CO: 484gr

29% Jobs
44% People
61 Lanes

Travel Time: 40 min
CO: 622gr

16% Jobs
31% People
34 Lanes

Travel Time: 50 min
CO: 980gr

52 Lanes



Short Term Next Steps
• Target: all US cities with >100k people

– About 320 cities
– About 80,000 sq km

• Part A: Generate tree count/location for all
– Needs 1M sq km of satellite
– Suitable for ecosystem services and urban planning
– Team formed; project underway…

• Part B: Generate layout (and UCP) for all
– Suitable for urban planning
– Team being formed…
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Who funds this multi-disciplinary work?

Metropolitan 
Transportation 

Commission
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It is not just us…
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Please see papers for more details!
(or ask us)

Questions?

www.cs.purdue.edu/homes/aliaga
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http://www.cs.purdue.edu/homes/aliaga


Application: 
Urban Cloud Control

[Garcia-Dorado et al. 2017] 43



Application: 
Urban Temperature

[Garcia-Dorado et al. 2017, Patel 2022] 44



Application: Urban Greening
Temperature Humidity Rainfall

Northeast greening

Southeast greening

-1°C +1°C -5% +5% +20mm-20mm

Indianapolis

“Hot city”

“Cool city”

[Aliaga et al. 2013] 45



Application: Urban Greening

Circular 
greening

Distributed greening

-20mm +20mm-1°C +1°C -5% +5%

Indianapolis

“Dry city”

“Warm and… …humid city””

Temperature Humidity Rainfall
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Application: Urban Flooding

[Mustafa et al. 2017/2018/2019] 47



Application: Urban Flooding
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Linear Regression 
Logarithmic Linear Regression 
Pearson correlation coefficients

Application: Urban Flooding
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Application: Urban Traffic

[Garcia-Dorado et al. 2014, Waddell et al. 2018] 50



Application: Urban Traffic
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Initial Simulation

Travel Time: 60min
CO: 1012 gr

The user wants to optimize the 
city to 50, 40, and 30 min as 
maximum Travel Time



Application: Urban Traffic
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Solutions:

Travel Time: 30 min
CO: 484gr

29% Jobs
44% People
61 Lanes

Travel Time: 40 min
CO: 622gr

16% Jobs
31% People
34 Lanes

Travel Time: 50 min
CO: 980gr

52 Lanes



(a) Input urban area (c) Our footprints and roof ridges (d) Our procedural generation(b) Initial segmentation

Satellite to Procedural Roofs
…to Solar Planning

[Zhang et al. 2022]



Please see papers for more details!
(or ask me)

aliaga@cs.purdue.edu

Questions?

www.cs.purdue.edu/homes/aliaga
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City Population

• 4000 cities with >100k population (contains 
roughly 30% of world population)
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Cities are complex
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