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Levels

A4
 Level O
— LCZ and derivative work is doing great!

* Level 1
— Start resolving individual buildings
— Produce improve urban parameterization...

e Level 2

— Develop novel and impact urban planning and design
applications
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Cities

* Most people live in smaller cities
 US:

1,000,000 or more |10
500,000 to 999,999 | 27
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Cities

* Most people live in smaller cities
* Europe:
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Problem: Missing Data

<

« >80% of the people living in cities are NOT
in big metropolis

» Large metropolis are data rich but the
cities where most people live are NOT
data rich



Problem: Missing Data

* Typical Data and Limitations

PlanetLabs Worldv1ew Aerial OSM: crowd-sourced
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(scarcity and missing data only exacerbated in small/med cities)

[He et al. 2022]
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Solution: Digital Synthetic Cities

* Generate a “statistically similar” synthetic building and/or city

e Use whatever crowd-sourced and captured data is available (e.g.,
OSM, satellite-if-any)

— It provides data that is incomplete but highly varied

 Then a deep generative network can learn the generalized “style”
(i.e., distribution) from a noised large-scale dataset.

— Does not produce a perfect reconstruction, but is of a similar
distribution and thus suitable for many types of simulations

— Output is fully synthetic and annotated so numerous what-if scenarios
can easily be performed

* j.e., “see more than we can see”




Solution (1 of N): >
Capture a subset and generate g

» Satellite images: generate hi-res segmentation from low-res

Satellite

U-Net + BLS ESRGAN + U- UNET + ESRGAN

—O‘_" Method Ground Truth

5-50% better than prior methods

[He et al. 2023]



Solution (2 of N):
Capture a subset and generate

A4

e Satellite images: generate cities from low-res

LandScan, JAXA, Segmentation
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[Zhang et al. 2021]



Solution (3 of N):
Capture subset and generate
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* Produce procedural facades from partial data

Our Method
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[Zhang et al. 2020a, Zhang et al. 2020b]



Solution (4 of N):
Capture subset and generate
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* From one ground image, produce entire bldg

Our Method
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[Nishida et al. 2018, Bhatt et al. 2020]



Solution (5 of N):
Capture subset and generate

e Use spatio-temporal satellite images to localize individual trees

Our Method

[Firoze et al. 2022] Accuracies of 87-97% 16



Solution (6 of N):
Capture subset and generate

* Generate city layouts, then compute UCPs

Input: Roads+Priors Output: Building Mass
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Deep Generative
Layout Generation

We trained a generative network based on large-scale open resource dataset. The network is
trained to represent all possible urban layout styles into a series of normal distributions.
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The well-pretrained model can synthetically generate realistic city blocks from normal distributions
and marginal normal distributions indicated by user priors.

Distributions

Training

Graph-Based
Generative Network

Normal
Distributions

Inference

Pretrained Network

Realistic 3D building

RN

21



Deep Generative
Layout Generation

L

* Height data is also produced (Austin collaboration)

— 100k city blocks
— 2M buildings

* Current status

— Tested/trained for 28 North American cities
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Experiment: Comparison

New Orleans New York City Los Angles Dallas Chicago
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Experiment: Generate Chicago from 5% data

A4

Plan area ratio

Synthetic Generation



Experiment: Generate Chicago from 5% data

A4

Building surface to plan area ratio

28.4635

M.

Synthetic Generation Ground Truth from OSM



Experiment: Generate Chicago from 5% data

A4

Area-weighted building height

Synthetic Generation Ground Truth from OSM



L1 error using 5-100% of data

Plan Area Ratio

Building surface to plan area ratio
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Input Percentage

With only 5% input, we can generate the
entire city in the accuracy of:

* Plan area ratio: L1 error < 2m per pixel

*  Building surface to plan area ratio: L1 error
< 11% per pixel

* Area-weighted building height: L1 error <
2.1 m per pixel

* Building height distribution: W-distance <
1.6 per pixel

29



L2: Applications

L

e WRF-Urban

— As one application, we have run WRF-Urban
forecasts and what-ifs for several cities:

* Chicago, Indianapolis, Austin

* Flooding

e Vehicular Traffic



WRF-Urban Simulations

Surface Temperature

2011-12-10-29(UTC-6) Ground Truth

2/9/23 31



WRF-Urban Simulations

Wind Speed

2011-12-10-21(UTC-6) Ground Truth9
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WRF-Urban Simulations
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Other Applications:
Urban Cloud Control

&

a) b) c) 7.30 pm
[
- Overcast Overcast
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Some Clouds
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o
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Fig. 10. Inverse Cloud Design. Three examples of cloud design. a) The user interactively draws a land use distribution; b) the user selects three different
high-level behaviors of the weather; ¢) the system finds such weather and the weather sequence is visualized.

[Garcia-Dorado et al. 2017] 34



Other Applications:
Temperature Mitigation

o
S

a) Error Optimization Cost Minimization

¢) Original: 33.0C R e)Justroofs:31.9C

-

Temperature
Temperature

\ 0%, Park
0% White roofs =" \ 6 1% White xoofs

d) Just parks: 32.0C & 4 ) Both: 31.8C

Cost Value
Cost Value

31% Park = \a 17.7% Park
0% White roofs - 48% White roofs

Fig. 12. Inverse Temperature Design. a-b) We show the behavior of the optimization for the solution e ) of this figure: a) if our error optimization mode is
used (i.e., optimize the temperature); b) if we use our cost minimization mode (i.e., temperature and cost optimization); c¢) the original model; d) altered model
that achieves one degree reduction by introducing more parks; e) alternative model that achieves the same goal but uses white roofs to increase albedo; and f)
a solution with both parks and white roofs (note the reduction in both).

[Garcia-Dorado et al. 2017, Patel 2022] 35
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Other Applications: Urban Flooding

0.8 | | T
Bl Linear Regression
0.6 - |[ll?;| Logarithmic Linear Regression 7 x;:Average street length
|_1#,| Pearson correlation coefficients X,: Street orientation
0.4 1 xj: Street curvature
x,: Major street width
027 | x5 Minor street width
0 | x4 Mean parcel area
x,: Building rear setback
02 - | Xy Building side setback
X,: Building coverage
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Other Applications: Urban Traffic

Solutions:

4t

Travel Time: 50 min

Travel Time: 40 min Travel Time: 30 min
CO: 380gr CO: 622gr CO: 484gr
52 Lanes 16% Jobs 29% Jobs
31% People 44% People
34 Lanes 61 Lanes

38



Short Term Next Steps

e Target: all US cities with >100k people
— About 320 cities
— About 80,000 sg km

* Part A: Generate tree count/location for all
— Needs 1M sqg km of satellite
— Suitable for ecosystem services and urban planning
— Team formed; project underway...

e Part B: Generate layout (and UCP) for all

— Suitable for urban planning
— Team being formed...
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Please see papers for more details!
(or ask us)

Questions?
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Application:
Urban Cloud Control
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Fig. 10. Inverse Cloud Design. Three examples of cloud design. a) The user interactively draws a land use distribution; b) the user selects three different
high-level behaviors of the weather; ¢) the system finds such weather and the weather sequence is visualized.
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Application:
Urban Temperature
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Fig. 12. Inverse Temperature Design. a-b) We show the behavior of the optimization for the solution e ) of this figure: a) if our error optimization mode is
used (i.e., optimize the temperature); b) if we use our cost minimization mode (i.e., temperature and cost optimization); c¢) the original model; d) altered model
that achieves one degree reduction by introducing more parks; e) alternative model that achieves the same goal but uses white roofs to increase albedo; and f)
a solution with both parks and white roofs (note the reduction in both).

[Garcia-Dorado et al. 2017, Patel 2022] 44



Temperature Humidity
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Application: Urban Greeni
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Application: Urban Flooding

7

Road length,
orientation, curvature
and width

[Mustafa et al. 2017/2018/2019] 47



Application: Urban Flooding

STEP 1

e

10 input parameters

\ 4

Urban procedural modelling
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/ 2,000 urban layouts /
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Flow characteristics
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Influence of
building layout
on inundation
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Application: Urban Flooding
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[Garcia-Dorado et al. 2014, Waddell et al. 2018]




Application: Urban Traffic

Initial Simulation

Travel Time: 60min
CO: 1012 gr

The user wants to optimize the
city to 50, 40, and 30 min as
maximum Travel Time

51



Application: Urban Traffic.

Solutions:

o

Travel Time: 50 min Travel Time: 40 min Travel Time: 30 min
CO: 980gr CO: 622gr CO: 484gr
52 Lanes 16% Jobs 29% Jobs
31% People 44% People

34 Lanes 61 Lanes .



Satellite to Procedural Roofs
...to Solar Planning
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(a) Input urban area (b) Initial segmentation (c) Our footprints and roof ridges (d) Our procedural generation

[Zhang et al. 2022]
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Please see papers for more details!
(or ask me)
aliaga@cs.purdue.edu

Questions?


http://www.cs.purdue.edu/homes/aliaga

City Population

e 4000 cities with >100k population (contains
roughly 30% of world population)

4
%
* . fhme,
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Cities are complex



