

Simulating Convective Storms

An Object Based Evaluation of a Continental-Scale Convection-Permitting Climate Simulation

Andreas F. Prein, Kyoko Ikeda, Changhai Liu, Roy Rasmussen, Randy Bullock

GEWEX Convection-Permitting Climate Modeling Workshop National Center for Atmospheric Research, Sept. 6th 2016 prein@ucar.edu

@AGUPUBLICATIONS

Reviews of Geophysics

REVIEW ARTICLE

10.1002/2014RG000475

Key Points:

 Convection-permitting climate models reduce errors in large-scale models

A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges

Andreas F. Prein^{1,2}, Wolfgang Langhans³, Giorgia Fosser⁴, Andrew Ferrone⁵, Nikolina Ban⁶, Klaus Goergen^{7,8,9}, Michael Keller^{6,10}, Merja Tölle¹¹, Oliver Gutjahr¹², Frauke Feser¹³, Erwan Brisson¹⁴, Stefan Kollet^{9,15}, Juerg Schmidli^{6,10}, Nicole P. M. van Lipzig¹⁶, and Ruby Leung¹⁷

Simulating on the Storm-scale

Convective outbreak in May 2010

Observation

WRF 4 km

AR

Objective based analysis allows to evaluate model on the storm scale

Method for Object-based Diagnostic Evaluation (MODE) Time Domain (MODE-TD)

R

Evaluation of WRF 4 km CONUS climate simulation

Simulation Domain and Setup

WRF 4 km | 1359 x 1015 grid cells

Physics

Microphysics
Thompson aerosol-aware
[Thompson and Eidhammer 2014]

NCAR

- Radiation RRTMG [lacono et al. 2008]
- Land-surface model NOAH-MP
- Boundary layer YSU [Hong et al. 2006]

Spectral Nudging U, V, T, and ZG above the PBL

Liu et al. 2016

MCS in Texas during March 2007

STAGE IV b 33°N Observed 20 time [h] 30°N 5 0 24 26 28 latitude [0] 32 34 36 -88⁻⁹⁰⁻⁹²⁻⁹⁴⁻⁹⁶⁻⁹⁸100¹⁰² 27°N 95°W 101°W 98°W 92°W WRF d 33°N Modeled 20 time [h] 30°N 5 0 $^{24} \begin{array}{c} _{26} \begin{array}{c} _{28} \\ _{/atit_{Uae}} \begin{array}{c} 30 \\ _{j} \end{array}} \end{array} \\ \overset{30}{_{4tit_{Uae}}} \begin{array}{c} 32 \\ _{j} \end{array} \\ \overset{32}{_{34}} \begin{array}{c} 34 \\ 36 \end{array} \\ \overset{36}{_{-88}} - 90 - 92 - 94 - 96 - 98 \\ fongitude \left[\begin{array}{c} 0 \end{array} \right] \end{array}$ 27°N 101°W 98°W 95°W 92°W precipitation $[mm h^{-1}]$ 5 10 15 20 25 30 35 40 45 50 55 60 65 0

R

NATIONAL CENTER

MCS in Texas during March 2007

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

4 km WRF model is able to simulate the precipitation form MCSs realistically

Total Precipitation

June, July, and August Storm tracks

- Realistic representation of storm tracks
- Underestimation of storms in Central U.S. by up to -70 %

Storm Environments in Midwest

Hit Events

Storms in Obs. and in Mod.

700 hPa geopotential height anomaly

WRF is not able to trigger storms in weakly forced conditions

Storm attributes – Midwest region

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

ObservationModel

Superior representation of storm

- Speed
- Maximum Precipitation
- Lifetime
- Track length

Storm development – Midwest region Storms between 10 to 20 hours Lifetime

Observation

Model

- Storms reach maximum intensity after 1-8 hours
- Short storms reach maximum size after 3-4 hours long storms after ~7 hours

Conclusion

- We are able to simulate realistic convective storms
- MTD can provide unrepresented insights in model performance
- Investigation of future changes in storm characteristics

Thank you

Storm Genesis

number of track geneses per year [] 0.0 0.2 0.4 0.6 1.4 0.8 1.0 1.2 1.6 1.8 2.0 2.2 2.4 2.6 2.8

• Underestimation of storm geneses in central U.S.

• Overestimation along the Golf and Atlantic coast

MODE Time Domain (MTD)

Extension of the MODE tool to the time dimension

[Randy Bullock, NCAR]

Storm Environments in Midwest

Method for Object-based Diagnostic Evaluation (MODE) Time Domain (MODE-TD)

[adapted form Randy Bullock]

NATIONAL C

Storm Movement

- Fast storms in the north, slow storms in the south
- Local differences between WRF and STAGE IV

Object properties intercorrelations

- Realistic intercorrelation of storm attributes
- Larger storms are more intense

0.23

0.28

1.5

2.0

1.0

Storms size correlates with storm total precipitation

Diurnal Cycle of storm densities

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

Storm attributes – Midwest region

Object Properties

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

Future changes storm attributes

