Overview of the modernized Noah-MP version 5.0

ا ف	master 👻 ያ 13 branches	𝒱 4 tags	Go to file Add file - Code
)	cenlinhe Merge pull request #8	1 from NCAR/develop	6934a96 2 weeks ago 🛛 238 comm
1	docs	release of Noah-MP version 5.0	2 months a
	drivers/hrldas	update Makefile	last mor
	parameters	release of Noah-MP version 5.0	2 months a
	src	update Makefile	last mor
1	utility	update Makefile	last mor
3	LICENSE.txt	Create LICENSE.txt	2 weeks a
9	README.md	Update README.md	2 weeks a
9	RELEASE_NOTES.md	Create RELEASE_NOTES.md	2 months a

NCAR

Noah-MP Community Model Repository

https://github.com/NCAR/noahmp

Unified Noah-MP GitHub

Cenlin He (NCAR)

Prasanth Valayamkunnath^{1,5}, Michael Barlage², Fei Chen¹, Dave Gochis¹, Ryan Cabell¹, Tim Schneider¹, Roy Rasmussen¹, Guo-Yue Niu³, Zong-Liang Yang⁴, Dev Niyogi⁴, Michael Ek¹, and Noah-MP community

National Center for Atmospheric Research (NCAR), USA
NOAA Environmental Modeling Center (EMC), USA
University of Arizona, USA
University of Texas at Austin, USA
Indian Institute of Science Education and Research, India

Funding sources: USGS, NCAR Water System, NOAA

2023 Noah-MP Annual Users' Workshop @ NCAR, Boulder

Motivations and goals for modernizing/refactoring Noah-MP model

• Previous Noah-MP model code (prior to version 5.0):

code originally written about 12 years ago, which does not take advantage of modern Fortran language architecture;

single lengthy (>12,000 lines) source file lumping together all model physics with complex code and data structures, inconsistent format, hard to modularize, and difficult to read, modify, and debug;

These issues limit the development and application of Noah-MP.

• Overall goal:

create an efficient, concise, well-organized, easy-to-maintain/read, documented and highly-modularized code for Noah-MP following the modern Fortran code and data structures.

• Noah-MP versions:

prior to v5.0: Noah-MP version follows WRF version number since v5.0: Noah-MP uses its own version number **5.0.0**: major physics/infrastructure update, annual minor physics update, bug fix

Noah-MP Energy Processes

Noah-MP Water Processes

Total water balance:

Precipitation + lateral flow – Evapotranspiration – Total Runoff = Δ (water storage in canopy, snow, soil, aquifer)

Noah-MP Carbon Processes

Total carbon balance:

Photosynthesis – Respiration = \triangle **Plant carbon pool** + \triangle **Soil carbon pool**

Noah-MP physics updates since its original release in 2011

• Included in the community Noah-MP v5.0 code:

(1) the Miguez-Macho-Fan (MMF) groundwater scheme (Barlage et al., 2015);

(2) three additional runoff schemes: the Variable infiltration capacity (VIC), dynamic VIC, and Xinanjiang schemes (McDaniel et al., 2020);

(3) tile drainage schemes (Valayamkunnath et al., 2022);

(4) dynamic irrigation schemes (sprinkler, micro, and flooding irrigation) (Valayamkunnath et al., 2021);

(5) a dynamic crop growth model for corn and soybean (Liu et al., 2016) with enhanced C3 and C4 crop parameters (Zhang et al., 2020);

(6) coupling with urban canopy models (Xu et al., 2018; Salamanca et al., 2018) with local climate zone modeling capabilities (Zonato et al., 2021);

(7) enhanced snow cover, snow compaction, and wind-canopy absorption parameters (He et al., 2021);

(8) a wet-bulb temperature-based snow-rain partitioning scheme (Wang et al., 2019).

Noah-MP physics updates since its original release in 2011

• Included in users' own Noah-MP code:

(1) nitrogen dynamics (Cai et al., 2016);

(2) big-tree plant hydraulics (Li et al., 2021);

(3) dynamic root optimization (Wang et al. 2018) with an explicit representation of plant water storage (Niu et al., 2020);

(4) additional snow cover parameterizations (Jiang et al., 2020);

(5) coupling with a wind erosion model (Jiang et al., 2021);

(6) a wetland representation and dynamics (Z. Zhang et al., 2022);

(7) a unified turbulence parameterization throughout the canopy and roughness sublayer (Abolafia-Rosenzweig et al., 2021);

(8) enhanced snow albedo representations (Abolafia-Rosenzweig et al., 2022);

(9) coupling with a snow radiative transfer (SNICAR) model (Wang et al., 2020);

(10) an organic soil layer representation at forest floors (Chen et al., 2016) and a microbial-explicit soil organic carbon decomposition model (MESDM; X. Zhang et al., 2022b);

(11) coupling with atmospheric dry deposition of air pollutant (Chang et al., 2022);

(12) enhanced permafrost soil representations (X. Li et al., 2020);

(13) spring wheat crop dynamics (Zhang et al., 2023);

(14) new treatment of thermal roughness length (Chen and Zhang 2009);

(15) the Gecros crop model (Ingwersen et al., 2018; Warrach-Sagi et al., 2022);

(16) a 1-D dual-permeability flow model (based on the mixed-form Richards' equation) representing preferential flow through variably-saturated soil with surface ponding (University of Arizona).

(17) Coupled with Crocus glacier model (Eidhammer et al., 2021)

Key features of modernized/refactored Noah-MP version 5.0: Enhanced Modularization

https://github.com/NCAR/noahmp

Key features of modernized/refactored Noah-MP version 5.0: Enhanced data structure

(a)

(b)

noahmp%forcing%PressureAirRefHeight noahmp%forcing%RadLwDownRefHeight noahmp%forcing%RadSwDownRefHeight noahmp%config%nmlist%OptSnowSoilTempTime noahmp%config%domain%FlagCropland noahmp%config%domain%FlagSoilProcess noahmp%config%domain%NumSoilTimeStep noahmp%config%domain%SoilTimeStep noahmp%water%param%IrriFracThreshold noahmp%water%state%IrrigationFracGrid noahmp%energy%state%LeafAreaIndEff noahmp%energy%state%StemAreaIndEff noahmp%energy%state%VegFrac noahmp%energy%flux%HeatLatentIrriEvap noahmp%energy%flux%HeatPrecipAdvCanopy

Key features of modernized/refactored Noah-MP version 5.0: Enhanced code structure

	Refactored Noah-MP source code
nc	<mark>dule</mark> NoahmpMainMod
0	ntains
s	ubroutine NoahmpMain(noahmp)
	type(noahmp_type), intent(inout) :: noahmp
	call ProcessAtmosForcing(noahmp)
	call PhenologyMain(noahmp)
е	nd subroutine NoahmpMain(noahmp)
n	d module NoahmpMainMod
en	d module NoahmpMainMod Individual process-levelmodules module AtmosForcingMod
en	d module NoahmpMainMod Individual process-level modules module AtmosForcingMod contains
	d module NoahmpMainMod Individual process-level modules module AtmosForcingMod contains subroutine ProcessAtmosForcing(noahmp)
en (d module NoahmpMainMod Individual process-level modules module AtmosForcingMod contains subroutine ProcessAtmosForcing(noahmp) type(noahmp_type), intent(in out) :: noahmp
	d module NoahmpMainMod Individual process-level modules module AtmosForcingMod contains subroutine ProcessAtmosForcing(noahmp) type(noahmp_type), intent(in out) :: noahmp
n	d module NoahmpMainMod Individual process-level modules module AtmosForcingMod contains subroutine ProcessAtmosForcing(noahmp) type(noahmp_type), intent(inout) :: noahmp end subroutine ProcessAtmosForcing

https://github.com/NCAR/noahmp

Key features of modernized/refactored Noah-MP version 5.0: Enhanced variable names

Description	New name	Old name	Туре		
Variable physical meaning/definition	New name	Original name	Variable Type		
	State				
wetted or snowed fraction of canopy (-)	CanopyWetFrac	FWET	Real		
canopy intercepted liquid water (mm)	CanopyLiqWater	CANLIQ	Real		
canopy intercepted ice (mm)	CanopyIce	CANICE	Real		
canopy intercepted total water (CANICE+CANLIQ) (mm)	CanopyTotalWater	CMC	Real		
canopy capacity for snow interception (mm)	CanopyIceMax	MAXSNO	Real		
canopy capacity for liquid water interception (mm)	CanopyLiqWaterMax	MAXLIQ	Real		
ice fraction at previous timestep	SnowIceFracPrev	FICEOLD_SNOW	Real		
ice fraction in snow layers	SnowIceFrac	FICE_SNOW	Real		
bulk density of snowfall (kg/m3)	SnowfallDensity	BDFALL	Real		
snow cover fraction [-]	SnowCoverFrac	FSNO	Real		
partial volume ice of snow [m3/m3]	SnowIceVol	SNICEV	Real		
partial volume liq of snow [m3/m3]	SnowLiqWaterVol	SNLIQV	Real		
snow effective porosity [m3/m3]	SnowEffPorosity	EPORE_SNOW	Real		
snow layer ice [mm]	SnowIce	SNICE	Real		
snow layer liquid water [mm]	SnowLiqWater	SNLIQ	Real		
snow mass at previous time step(mm)	SnowWaterEquivPrev	SNEQVO	Real		
snow water eqv. [mm]	SnowWaterEquiv	SNEQV	Real		
snow depth (mm)	SnowDepth	SNOWH	Real		
ice fraction in soil layers	SoilIceFrac	FICE_SOIL	Real		
equilibrium soil water content [m3/m3]	SoilMoistureEqui	SMCEQ	Real		
soil water content between bottom of the soil and water table [m3/m3]	SoilMoistureToWT	SMCWTD	Real		
soil moisture (ice + liq.) [m3/m3]	SoilMoisture	SMC	Real		

Key features of modernized/refactored Noah-MP version 5.0: Enhanced coupling structure

https://github.com/NCAR/noahmp

Benchmarking for Noah-MP version 5.0

• Conducted a series of **hierarchical test simulations** during the course of Noah-MP refactoring to benchmark the functionality, reproducibility (bit-for-bit consistency), and computational efficiency.

• Three sets of benchmark simulations:

- 1. 21-year (2000-2020) 12-km continental US simulations driven by the NLDAS-2 atmospheric forcings (Xia et al., 2012);
- 10-year (2009-2018) point-scale SNOTEL 804-site simulations over the western US driven by observed precipitation and temperature as well as other NLDAS-2 atmospheric forcings downscaled to 90-m spatial resolution (He et al., 2021);
- 3. 1-year (2000) 4-km dynamic crop simulations over the U.S. Corn Belt region driven by the convection-permitting WRF modeling (Zhang et al., 2020);
- Archived all the atmospheric forcing datasets, model setup input datasets, and model output datasets for these benchmark simulations.
- Stored in the NCAR high-performance supercomputer (HPC) campaign storage file system (data path: /glade/campaign/ral/hap/cenlinhe/NoahMP_benchmark/) and can be provided by the corresponding author upon request, due to the extremely large data size (8.8 TB).

Noah-MP Technical notes

NCAR

National Center for Atmospheric Research

National Science

The Community Noah-MP Land Surface Modeling System Technical Description Version 5.0

Cenlin He Prasanth Valayamkunnath Michael Barlage Fei Chen David Gochis Ryan Cabell Tim Schneider Roy Rasmussen Guo-Yue Niu Zong-Liang Yang Dev Niyogi Michael Ek

> NCAR Technical Notes NCAR/TN-575+STR

> > National Center for Atmospheric Research P. O. Box 3000 Boulder, Colorado 80307-3000 www.ucar.edu

The Community Noah-MP Land Surface Modeling System

Technical Description

Version 5.0

Originated: March 7, 2023

Cenlin He¹, Prasanth Valayamkunnath^{1,5}, Michael Barlage², Fei Chen¹, David Gochis¹, Ryan Cabell¹, Tim Schneider¹, Roy Rasmussen¹, Guo-Yue Niu³, Zong-Liang Yang⁴, Dev Niyogi⁴, Michael Ek¹

Research Applications Laboratory, National Center for Atmospheric Research, USA
NOAA Environmental Modeling Center, USA
University of Arizona, USA
University of Texas Austin, USA
Indian Institute of Science Education and Research, Thiruvananthapuram, India

Noah-MP version 5.0 reference

Cenlin He 🖂, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek

https://doi.org/10.5194/egusphere-2023-675

- Noah-MP model code: <u>https://github.com/NCAR/noahmp</u>
- HRLDAS/Noah-MP model code: https://github.com/NCAR/hrldas

On-going & future efforts

Couple modernized Noah-MP version 5.0 with other community host models:

- 1. coupling with NASA/LIS (collaborating with LIS group; on-going)
- 2. coupling with NOAA/UFS (collaborating with Mike Barlage and NOAA/EMC land team; future)
- 3. coupling with NWM/WRF-Hydro (collaborating with the WRF-Hydro team; on-going)
- 4. coupling with WRF and MPAS (collaborating with WRF and MPAS teams; future)

Thank you!

cenlinhe@ucar.edu

