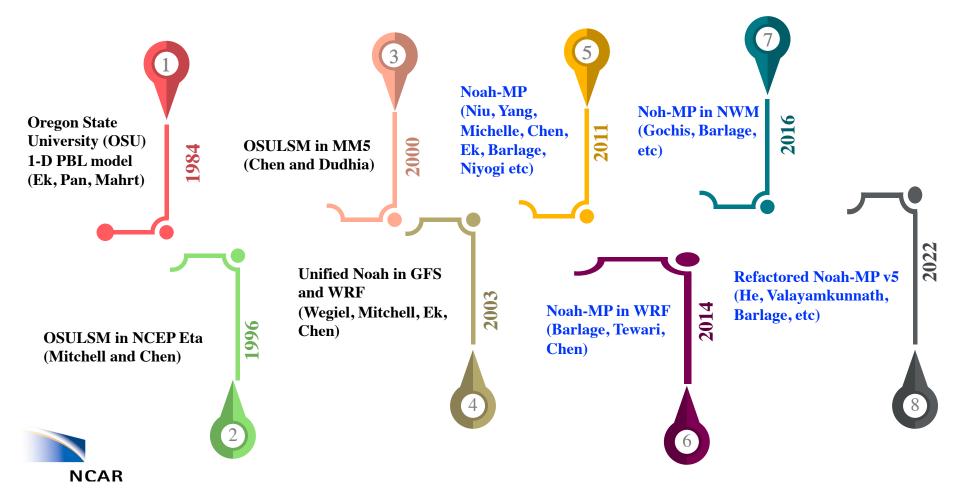

Brief History of the Noah and Noah-MP land models

Fei Chen Hydromet Applications Program, RAL/NCAR

Noah-MP User Workshop, 23 May 2023

land-surface processes and models are crucial to improving weather and climate predictability


Land-surface model (LSM) development chronology

- Gen-0 (prior to 60s): lack of land-surface processes (prescribed diurnal cycle of surface temperature) in atmospheric models.
- Gen-1a (mid 60s): surface model with time-fixed soil moisture
- Gen-1b (late 60s): Bucket model (Manabe 1969): time- and space-varying soil moisture
- Gen-2 (70s): Big-leaf model (Deardorff 1978): explicit vegetation treatment; a major milestone
- Gen-3 (late 80s): development of more sophisticated models including hydrological, biophysical, biochemical, ecological processes (e.g., BATS, SiB, NCARLSM, Century)
- mid 90s: implement advanced LSMs at major operational numerical weather prediction centers (Noah at NCEP; ECMWF, UK Met Office, Meteo-France)
- After 2000: integrated Earth System Modeling: carbon, nitrogen, hydrology, and ecosystem processes

Human dimension: urbanization, agriculture, forecast management, etc

Noah and Noah-MP development milestones

Community Noah-MP (multi-parameterization) land model

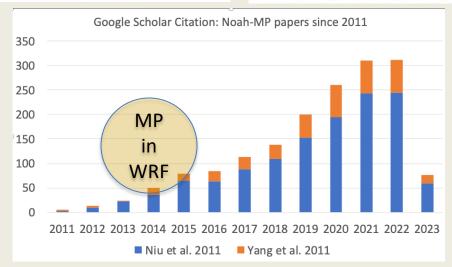
JOURNAL OF GEOPHYSICAL RESEARCH Atmospheres

AN AGU JOURNAL

Climate and Dynamics 🔂 Free Access

The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements

Guo-Yue Niu, Zong-Liang Yang 🔀, Kenneth E. Mitchell, Fei Chen, Michael B. Ek, Michael Barlage, Anil Kumar, Kevin Manning, Dev Niyogi, Enrique Rosero, Mukul Tewari, Youlong Xia

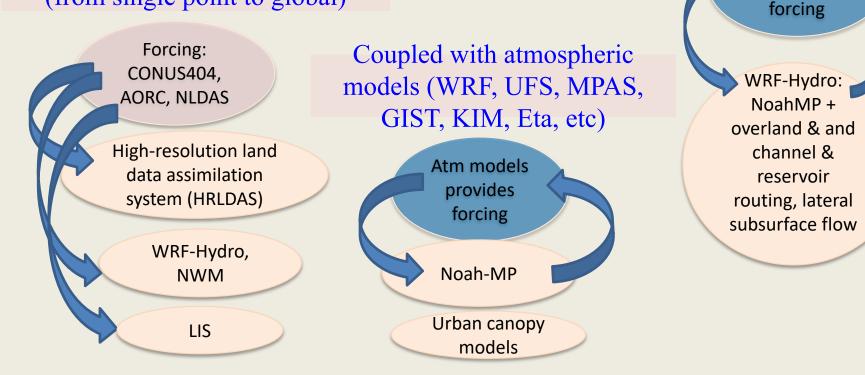

JOURNAL OF GEOPHYSICAL RESEARCH Atmospheres

AN AGU JOURNAL

Climate and Dynamics 🛛 🙃 Free Access

The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins

Zong-Liang Yang 🔀 Guo-Yue Niu, Kenneth E. Mitchell, Fei Chen, Michael B. Ek, Michael Barlage, Laurent Longuevergne, Kevin Manning, Dev Niyogi, Mukul Tewari, Youlong Xia



Noah-MP physics options (red: options used in CONUS 404)

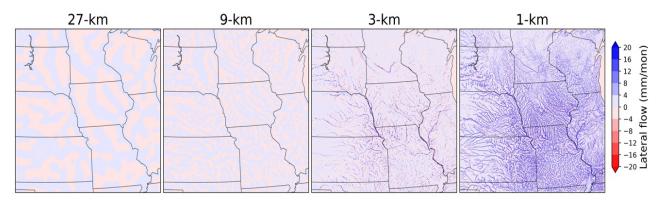
	Physical Processes		Options	References
MP = Multi-physics = Multi-hypothesis	Dynamic vegetation (DVEG)	(1) (2) (3) (4)	Off (use table LAI; use FVEG=SHDFAC from input) On (together with OPT_CRS=1) Off (use table LAI; calculate FVEG) Off (use table LAI; use maximum	Dickinson et al. 1998
Easy to incorporate new physics parameterization and data sets		(5) (6) (7) (8) (9)	FVEG) On (use maximum FVEG) On (use FVEG=SHDFAC from input) Off (use input LAI; use FVEG=SHDFAC from input) Off (use input LAI; calculate FVEG) Off (use MODIS monthly LAI; use maximum FVEG)	
Tool for assessing land physics uncertainties	Canopy stomatal resistance (CRS)	<mark>(1)</mark> (2)	<mark>Ball-Berry</mark> Jarvis	Ball et al. 1987 Jarvis, 1976
and for physics ensemble prediction	Soil moisture factor for stomatal resistance (BTR)	<mark>(1)</mark> (2) (3)	Noah (soil moisture) CLM (matric potential) SSiB (matric potential)	Chen et al., 1996 Oleson et al., 2004 Xue et al., 1991

Typical applications of Noah-MP

uncoupled standard-alone runs (from single point to global)

Coupled with atmospheric models (WRF-Hydro)

WRF provides


Geophysical Research Letters

Research Letter

The importance of scale-dependent groundwater processes in land-atmosphere interactions over the central United States

Michael Barlage, Fei Chen 🕱, Roy Rasmussen, Zhe Zhang, Gonzalo Miguez-Macho

First published: 16 February 2021 | https://doi.org/10.1029/2020GL092171

Monthly accumulated groundwater lateral flow (mm/month) for 2012 July

Understand high-resolution climate-hydrology-agriculture impacts Incorporating agriculture management processes

JGR Atmospheres

Research Article 📄 Free Access

Noah-MP-Crop: Introducing dynamic crop growth in the Noah-MP land surface model

Xing Liu, Fei Chen, Michael Barlage, Guangsheng Zhou, Dev Niyogi 💌

First published: 02 November 2016 | https://doi.org/10.1002/2016JD025597 | Citations: 48

JAMES Journal of Advances in Modeling Earth Systems

RESEARCH ARTICLE

10.1029/2020MS002159

Key Points: • Joint modeling of crop growth and

Joint modeling of crop growth and irrigation improves crop-yield simulation in irrigated regions

- Applying the state-level planting
- date helps improve the
- United States Using the Noah-MP Land Surface Model Zhe Zhang¹², Michael Barlage³, Fei Chen³, Yanping Li¹², Warren Helgason¹⁴, Xiaoyu Xu⁵, Xing Liu⁶, and Zhenhua Li¹²

Joint Modeling of Crop and Irrigation in the central

JAMES Journal of Advances in Modeling Earth Systems

Æ

R	ES	SE.	AR	СН	AI	RTI	C
10	10	20	(201	03.60	001	FOF	

· A dynamic irrigation scheme was

incorporated into Noah-MP, using soil moisture availability and crop

Key Points:

Lessons Learned From Modeling Irrigation From Field to Regional Scales

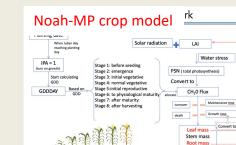
Xiaoyu Xu¹² ⁽⁶⁾, Fei Chen³ ⁽⁶⁾, Michael Barlage³ ⁽⁶⁾, David Gochis³ ⁽⁶⁾, Shiguang Miao² ⁽⁶⁾, and Shuanghe Shen¹

Environmental Research Letters

https://doi.org/10.5194/gmd-2022-311 Preprint. Discussion started: 26 January 2023 © Author(s) 2023. CC BY 4.0 License.

Developing Spring Wheat in the Noah-MP LSM (v4.4) for Growing Season Dynamics and Responses to Temperature Stress

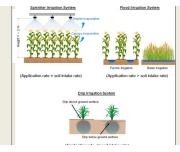
Zhe Zhang^{1,2}, Yanping Li^{1,2}, Fei Chen³, Phillip Harder^{1,4}, Warren Helgason^{1,4}, James Famiglietti^{1,2}, 5 Prasanth Valayamkunnath³, Cenlin Ho³, Zhenhua Li^{1,2}

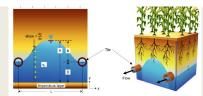

Water Resources Research / Volume 58, Issue 4 / e2021WR031242

Research Article

Modeling the Hydrologic Influence of Subsurface Tile Drainage Using the National Water Model

Prasanth Valayamkunnath 🔀 David J. Gochis, Fei Chen, Michael Barlage, Kristie J. Franz


First published: 08 April 2022


Noah-MP irrigation models

Grain

Soil moisture

Noah-MP tile-drainage model

Assimilating modern-era satellite data (soil moisture, leaf area index, and solar-induced chlorophyll fluorescence) to improve land-atmosphere interactions

Journal of Advances in Modeling Earth Systems

RESEARCH ARTICLE

10.1029/2020MS002394

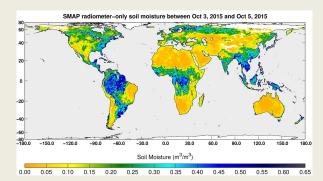
Key Points:

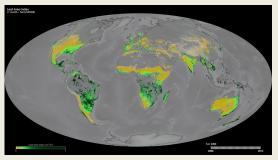
- The Multipass Land Data Assimilation Scheme (MLDAS) is proposed based on the Noah-MP-Crop model
- Leaf area index (LAI), soil moisture (SM), and solar-induced chlorophyll fluorescence (SIF) measurements are assimilated into the MLDAS to predict sensible heat flux (H). latent

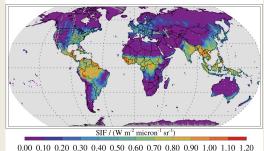
Improve the Performance of the Noah-MP-Crop Model by Jointly Assimilating Soil Moisture and Vegetation Phenology Data

Tongren Xu¹ ^(D), Fei Chen² ^(O), Xinlei He¹ ^(D), Michael Barlage², Zhe Zhang³ ^(D), Shaomin Liu¹ ^(D), and Xiangping He¹

¹State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resource, Raculty of Geographical Science, Beijing Normal University, Beijing, China, ²National Center for Atmospheric Research, Boulder, CO, USA, ³School of Environment and Sustainability, University of Saskatchewan, Saskatchovan, SK, Canada


https://doi.org/10.5194/hess-2022-379 Preprint. Discussion started: 14 December 2022 © Author(s) 2022. CC BY 4.0 License.




Improving predictions of land-atmosphere interactions based on a hybrid data assimilation and machine learning method

Xinlei He¹, Yanping Li², Shaomin Liu^{1*}, Tongren Xu¹, Fei Chen³, Zhenhua Li², Zhe Zhang², Rui Liu⁴, Lisheng Song⁵, Ziwei Xu¹, Zhixing Peng¹, Chen Zheng⁶

OCO-2 Solar-Induced Fluorescence Aug-Oct 2014

The Community Noah-MP Land Surface Modeling System Technical Description Version 5.0

Cenlin He Prasanth Valayamkunnath Michael Barlage Fei Chen David Gochis Ryan Cabell Tim Schneider Roy Rasmussen Guo-Yue Niu Zong-Liang Yang Dev Niyogi Michael Ek

> NCAR Technical Notes NCAR/TN-575+STR

> > National Center for Atmospheric Research P. O. Box 3000 Boulder, Colorado 80307-3000 www.ucar.edu

National Center for

Vational Science

Refactored Noah-MP (version 5.0) Released in 2022

Provide fresh avenues for developing novel physics options and active participation within the Noah-MP community.

Thank you!

