

Coupling Noah–MP to the Korean Integrated Model

Korea Institute of Atmospheric Prediction Systems (KIAPS), South Korea

Myung-Seo Koo, Hyeon-Ju Kim, Jaeyoung Song, and Mee-Hyun Cho

KIAPS phase I (2011~2019)

New atmospheric model

- New spectral element dynamical core on cubed-sphere grid
- New physics package and data assimilation system
- Deterministic medium-range weather forecast (~10 days)
- → KIM has become operational since April 2020

KIAPS phase II (2020~2026)

Seamless and coupled model

- Scale-aware physics at variable resolution
- Ensemble forecast at extended-range time scale (~30 days)
- Coupled atmosphere-surface model with chemistry process
- → new KIM covering multiple scales in space and time

KIM surface process

IGBP

→ currently operational in KMA with land surface data assimilation (LIS; soil moisture and snow)

Advanced land surface model for KIM

Noah with multiple parameterization (Noah-MP)

• advanced version of research-based and operational Noah land surface model

CPL22.01 (AUG 2022)

- research purpose in WRF and LIS and operational purpose in NCEP-UFS
- ➔ portable and (still) cost-effective

	Snow layer	Snow density	Canopy flux	Radiative transfer	
Noah	1 (blended)	fixed	No	No	
Noah-MP	Up to 3	Variable	M-O	Two stream	

CPL22.0)2 (OCT	2022)
		/

- Noah-MP V4.4 (Ism_flag=3)
- Code clean-up
- More parameter in namelist
- Irrigation/tiledrain module
- Revision in CWPVT table value
- New canopy heat storage
- SNOW_EMIS=1.0→0.95

Option	Description		Namelist
DVEG	Dynamic Vegetation option	4	Off (LAI from table; FVEG = max. vfrac)
CRS	Stomatal Resistance option	1	Ball-Berry
BTR	Soil Moisture Factor for Stomatal Resistance	1	Noah
RUN	Runoff and Groundwater option	1	TOPMODEL with groundwater
SFC	surface layer drag coefficient calculation	1	Monin-Obukhov
FRZ	Supercooled Liquid Water option	1	No iteration
INF	Soil Permeability option	1	Linear effects, more permeable
RAD	Radiative Transfer option	1	Two-stream applied to vegetated
ALB	Ground Surface Albedo option	1	BATS
SNF	Precipitation Partitioning between snow and rain	1	Jordan (1991)
TKSNO	Snow Thermal Conductivity	1	
твот	Soil Temperature Lower Boundary Condition	2	TBOT at 8 m from input file
STC	Snow/Soil temperature time scheme	1	semi-implicit
GLA	glacier treatment option	2	slab ice (Noah)
RSF	surface evaporation resistance option	1	Sakaguchi and Zeng, 2009
SOIL	options for defining soil properties	1	use input dominant soil texture

* No crop/urban/irrigation/tile-drain

CPL23.01 (JUN 2023)

Noah-MP V5.0 (lsm_flag=4)

- Modernized/refactored code
- Glacier SNOW_EMIS=0.98→0.95

CPL21.01 (DEC 2021)

Noah-MP V4.0.1 (lsm_flag=2)

LIS-based code

Noah-MP V4.2 (lsm_flag=3) WRF-based code

w/ own updates for KIM-NoahMP 5

Noah vs. Noah-MP in KIM (forecast day 5, July 2017)

* NoahMP: V5.0 w/o any physical revision

2-m temperature

- Generally warm and dry, especially over forest
- Cold over tundra region

Noah vs. Noah-MP in KIM (forecast day 5, January 2017)

* NoahMP: V5.0 w/o any physical revision

- Cold over snow region, while warm and dry over forest
- Too warm over the Antarctic

Exp.	Description	Remark	Version	
NOAH	Noah	Revised Noah V3.4.1 (Koo et al. 2017/2018)		
MP0	Noah-MP V5.0	Technical implementation w/o any physical revision		
MP1	Fixed snow albedo (0.82) over glacier ice	Same to Noah		
MP2	No canopy heat storage	nopy heat storage Same to Noah-MP V4.2		
MP3	CWPVT=0.67 \rightarrow 0.18 for evergreen broadleaf forest	Same to Noah-MP V4.2	(0000001 2022)	
MP4	Use of 2D soil color data	Same to CLM V5.0		
MP5	Bare soil emissivity 0.97 to 0.90	Same to Noah	23.01	
MP6	No nitrogen effect (foliage nitrogen factor=1)		(June 2023)	
MP7	New table values for VCMX5	Same to CLM V5.0		

✓ NEW: Noah-MP V5.0 w/ MP1-7

→ Toward reducing systematic warm and dry biases

* NEW : Noah-MP V5.0 w/ MP1-7

2-m temperature

2-m specific humidity

Vertical profile of temperature (against IFS)

* NEW : Noah-MP V5.0 w/ MP1-7

July 2017

January 2017

11

Vertical profile of temperature (against IFS)

Noah vs. Noah-MP

* NEW : Noah-MP V5.0 w/ MP1-7

July 2017

January 2017

12

Q2m against surface observation (July 2017)

Noah vs. Noah-MP

Q2m against surface observation (January 2017)

Noah vs. Noah-MP

Seasonal simulation: 2-m temperature (against ERA5)

* NEW : Noah-MP V5.0 w/ MP1-7

- The improvement in temperature is preserved in terms of seasonal mean.
 - mainly due to canopy heat storage, soil color/emissivity, glacier snow albedo
 - also improved in wind, moisture, ... (not shown here)

Seasonal simulation: 2-m temperature (against ERA5)

Noah vs. Noah-MP

* NEW : Noah-MP V5.0 w/ MP1-7

- generally warmer over forest similar to medium-range forecast
- rather warmer over snow ? why?

KIM-Single column model (SCM) Received: 9 June 2021 Revised: 19 November 2021 Accepted: 25 November 202 Dry season (GoAmazon) DOI: 10.1002/gi.4222 RESEARCH ARTICLE EAMv1 — — — EAMv1.trigger Long-term single-column model intercomparison of diurnal EAMv1.SILHS cycle of precipitation over midlatitude and tropical land SAM0-UNICON 500 SCAM6 Shuaiqi Tang¹⁽⁰⁾ | Shaocheng Xie²⁽⁰⁾ | Zhun Guo³ | Song-You Hong⁴ | Boualem – – SCAM6.land 400 Khouider⁵ | Daniel Klocke⁶ | Martin Köhler⁷ | Myung-Seo Koo⁸⁽⁰⁾ | Phani Murali · SCAM5 Krishna⁹ | Vincent E. Larson^{1,10} | Sungsu Park¹¹ | Paul A. Vaillancourt¹² | Yi-Chi SKIM

SKIM.land

Wang¹³ | Jing Yang¹² | Chimene L. Daleu¹⁴ | Cameron R. Homeyer¹⁵ | Todd R.

Jones¹⁴ | Neelam Malap⁹ | Roel Neggers¹⁶ | Thara Prabhakaran⁹ | Enver

- Distinct improvement with updates
- Being tested for other cases (wet, clear, ..)

OBS

Noah

MP1 (ORG)

MP4 (22.02)

- ✓ The recent version of Noah-MP (V5.0) LSM has been successfully coupled to the Korean Integrated Model (KIM).
- ✓ From KIM's point of view, the systematic biases were found in Noah-MP LSM as below:
 - warm and dry bias over forest and arid region
 - cold and (weakly) dry bias over snow region
 - warm and wet bias over glacier region
- ✓ The systematic warm and dry biases could be rectified by
 - removing canopy heat storage over forest region
 - using a fixed snow albedo over glacier region
 - employing soil color map over arid region

- (temporarily) not considering foliage nitrogen effect
- refining a reference table values (CWPVT, VCMX5)

✓ In the next version of coupled KIM with the aforementioned updates, Noah-MP LSM will offer a comparable performance to Noah LSM in terms of medium-range forecast and seasonal prediction.

Surface layer parameterization

F	Physics module	Friction velocity	Exch. coeff. for momentum	Exch. coeff. for heat/moisture	wind speed (z=1)
SFC	(based on GFS)	u*	$C_m \sim f(F_m)$	$C_h \sim f(F_h)$	w/ SGS effect
LSM	Noah			C _h	w/ SGS effect
	Noah-MP	u*	$C_m = C_h \sim f(F_m = F_h)$		lower limit=1
	PBL	u*	F _m	F _h	w/ SGS effect

Surface albedo and emissivity

Physics module		Albedo (4-class: diffused/direct for VIS/NIR)	Emissivity	
	RAD	MODIS-based clim.	Noah Table	
LSM	Noah	SW _{net} from RAD	Noah Table	
	Noah-MP	parameterized	parameterized	

Ongoing and future work: advancement in physics and input data

0.0326

0.0325

0.0322

0.0320

20

New method development:

Determination of vegetation layer emissivity, reflectivity, and transmittivity with simplified method

ellite retrieval (CAMEL)

Satellite I

New method

Leaf area index

Update Vegetation Parameters:

Applying leaf/stem area index (LSAI) and canopy top height (HTOP) to the NoahMP

- Noah, NoahMP, and CLM use significantly different LAI/SAI: (1) Noah LAI has an unrealistically high value, (2) Noah-MP has an abnormal seasonal cycle
- · CLM LAI climatological data was made based on MODIS but Noah and Noah-MP take a table value that variates depending on the surface type

- > Applying only correct LAI generally increases model error including T, RH, etc.
- > Correct LAI can improve surface albedo in the summer: snow may mainly affect the winter albedo
- > SAI and HTOP play an important role in albedo estimation
- > Applying the data consistency gives better results than applying individual data

Thank you for listening