



# Modeling irrigation activities in North China Plain: from a realistic perspective

## **Danqiong Dai**

Collaborator: Fei Chen, Prasanth Valayamkunnath, Zhe Zhang, Cenlin He (NCAR) Yanping Li; Zhenhua Li (University of Saskatchewan) Liang Chen, Zhuguo Ma (Institute of Atmospheric Physics, CAS)

#### **Research** motivation



Global GRACE trend of terrestrial water storage changes

• More than half of the world's major aquifers are being depleted, some of them at an alarming pace.

+ Human activities (i.e., irrigation) are the major driver for groundwater depletion in North China Plain.

#### **Research** motivation



Challenges and Shortcomings:

- 1. Not many observations in China
- 2. Irrigation is highly variable in space and time
- 3. Focus on sensitivity tests, not a reality in China

#### **Research question**

- 1. How much irrigation water use is in North China Plain?
- 2. How does groundwater-fed irrigation impact on water storage?

#### Application one: irrigation water use estimation in North China Plain



• Previous studies focused on sprinkler irrigation technique, which is commonly applied in the USA but not conforms with the actual situation in China.

◆ All three major irrigation methods (Sprinkler irrigation, Micro irrigation, Flood irrigation) have been incorporated into Noah-MP for applications all over the world

## Automatic calibration framework in Noah-MP model



• The framework of automatic calibrated parameters is based on SCE-UA method in Noah-MP model.

#### Irrigation parameters calibration results



125°E

#### Irrigation water use simulation results





 The calibrated irrigation parameters improves the simulated irrigation water use in agreement with census data at prefecture level

## Application two: groundwater-fed irrigation impacts on water storage

data preparations



• Spatial distribution map of groundwater level monitoring wells. (a) China (b) research domain

water table depth data source: Geological environmental monitoring of groundwater level yearbooks of China

• The monthly observed groundwater level data from 2005 to 2016.

#### Incorporate groundwater-fed irrigation scheme in Noah-MP model







Q<sub>3</sub>

Q<sub>2</sub>

## Experiments design

| Experiments   | Parameter   | Lateral-flow | Pumping |  |
|---------------|-------------|--------------|---------|--|
|               | calibration |              |         |  |
| CTL           | No          | No           | No      |  |
| Lat_NoPumping | No          | Yes          | No      |  |
| NoLat_Pumping | Yes         | No           | Yes     |  |
| Lat_Pumping   | Yes         | Yes          | Yes     |  |

• Simulation driven with CMFD forcing data (0.1°)

- Simulation spanning from year 2000 to 2015
- ◆ Spin-up time is 120 years

#### **Results**

#### Cumulative water table depth change



 The cumulative changes in groundwater level during the period from 2005 to 2015 (unit: m)

The Lat\_Pumping experiment based on the MMF scheme is consistent with the spatial distribution of observed groundwater level changes in wells.

#### **Results**

#### Water table depth change



 The representation of groundwater-fed irrigation improves groundwater dynamics simulation.

• Time series plot depicting the anomalies of groundwater levels from 2005 to 2015.

#### terrestrial water storage change





Comparing with the declining trend in terrestrial water storage (-2.01 cm/year) observed by the GRACE satellite, both the NoLat\_Pumping experiment (-2.03 cm/year) and the Lat\_Pumping experiment (-1.86 cm/year) can effectively simulate the declining trend in terrestrial water storage. 14

### Summary and application

• presenting an automatic parameter calibration framework integrated with Noah-MP model to improve estimation of irrigation water use.

• incorporating groundwater-fed irrigation module helps reproduce the terrestrial water storage trend in land surface model.

• including more human activities in land surface model is called for in the future work