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Gradient Descent Minimization 
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Outline 

 
•  Chemical, Biological, Radioactive, or Nuclear (CBRN) Source Term 

Estimation (STE) examples 
–  High quality meteorological data 
–  Poor quality meteorological data 

•  Utilizing information on uncertainty in observations 
–  Cost function visualization and scaling 
–  STE variable uncertainty relations 

•  Uncertainty mapping 
–  Physics-based method (uncertainty are inputs to constrain adjoint) 
–  Ensemble-based method (adjoint to define the initial uncertainty) 
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Operational Chemical, Biological, Radiological, 
and Nuclear (CBRN) Defense Problem 

•  Scenario 
–  A sensor or sensor network detects CBRN materials 
–  Detection is currently used as the source to forecast the 

downwind impact 
–  The initial forecast may not accurately reflect the actual threat  
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High Level  
CBRN STE Algorithm Design 

Source Type 
Pre-Processor STE Step-1 

Algorithm 
(SCIPUFF) STE Step-2 

Variational STE 
Refinement Step-3 

Hazard 
Assessment 

Observations 

•  STE algorithm design constraints 
–  Ability to utilize varying types and frequency of observations 
–  Compatible with Second-order Closure Integrated PUFF (SCIPUFF) 

and Joint Effects Model (JEM) system designs 
–  Suitable to run on a laptop (e.g. computationally efficient) 
–  Answer available within seconds to minutes of starting the STE job 
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STE Algorithm Example 
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Wind Adjustment in CB STE Algorithm 
(FFT07* Case 61) 

FFT07 Domain at Dugway Prowing Ground, UT 

1 km 

First Guess Source Location 

x 

¤ 
True Source Location 

Wind Observation 

Wind 
Observation 

*FUsing Sensor Integrated Observing Network (FUSION) Field Trials 2007 (FFT07) 
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Cost Function Visualization  

Schematic of Cost Cost Surface for Location 
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Cost Function and Uncertainty  
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T

Ambiguity in STE variables 
(Plume Reference Frame) 
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Cost Function 
(Uncertainty Mapping) 

The Cost Function is defined as: 
 

Current definition of Background Error Covariance Matrix (EB) used: 
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Background Error Covariance Matrix 
(Instantaneous Release Example) 

2D Visualization Physics-Based Method 
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Exploiting Uncertainty Relationships 
(Meteorological Uncertainty) 

•   Use wind variability to constrain location 
–  Trend 
–  Plume meander 
–  Plume diffusion 

•  Can we filter the winds to distinguish the meander 
and diffusion? 

25 
Wind Speed 

Eddy time scale = Mean wind speed 
Width of plume  
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Deriving Wind Direction Uncertainty  
(FFT07 Trial 54) 

26 
Unclassified – Approved by DTRA Public Affairs June 20th, 2011 for Unlimited Distribution 

Meander Diffusion 

Eddy time scale = Mean wind speed 
Width of plume  = Cutoff Frequency 
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Inversion and Scaling 

Leveraged 3 Uncertainties to Bind 2 Variables 
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Cost Function Comparison 

Unconstrained 
Minimization 
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Cost Function Comparison 

Unconstrained 
Minimization 

  

Constrained Minimization 
By Location (xp,yp) 
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Cost Function Comparison 
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Background Error Covariance Matrix 
(Mapping Uncertainty Directly Via Adjoint) 
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Background Error Covariance Matrix 
(Mapping Uncertainty Directly Via Adjoint) 
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Conclusion 

   Using the combination of modeling systems 

would like to quantify the ambiguity between 

STE variables and more importantly, the 

relationships between their uncertainties. We 

would like to enhance this algorithm to 

incorporate un traditional observations.   


